
W A iR 1t 47 DEVELOPMENT OF A CONCURRENT IEE M ARCH P ROIjm4U ju
I CT2NAVAL POSTGAATE SCHOOL MONTEREY CA C N POWLEY

LMCLASSIFIED OCO 0/2 NLmmhmmlmhmmI

IIIIIIIIIIIIIl

-"IIIIII.IIIIIII MIII
IIIIMENEMIII

11112-1 1.0 : *2iuO
11U .2 2.

HHI4.0 11111 2.2

jj .25 ~ 1hi

* MICROCOPY RESOILUTION TEST CHART
NATlONAL BuREAL, Of STANDARDS- 963-

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AU"

THESIS
DEVELOPMENT OF A CONCURRENT TREE SEARCH PROGRAM

by

Curt Nelson Powley

October 1982

The~is Advisor: D. R. Smith

C0 Approved for public release, distribution unlimited

DTIC
Z ~ELECTE.

MAR 1 519833

83 03 .14 04r

SECURITY CLAISIPICATION4 OP THIS P49(*o fU oo Gao# ed)

6 PEROR~Itg COG. EPOT FONSR

I. AUPTN MNU .GV RJOR S. RCNTRAt CT RGAT0 NER.

TITI.1 e..* 5~116A S WCoRPONT NuPchigECOVME

Navalometraduat Sochool reSerhPrga October 1982
Monterey,.CaliforniaG93940."REPORTEROP PAGE

7. UTOR*& 4. CLASSC1 0GATN ONAON

AprovNedso fo ulicrlaeeitibtoyn ie

I?. OISYR0IAUN ORGTATEN NAM AND ADDRESS SO-m PRORA ELEMENT 35.ZC TASKfmt- i

*AE GS SUPPLEMENTARY wOTES

CIoncurreny, C 1ournt Prgamn, aallPrgamn,4reSach0erh

AIfiia CO O InteFIE NE Abstac ADataS Types DataR Strctu E sae

NSaal, eospecidaytre erh fnaena tooo thetfied of1 rtfiia
intelience Evefonith good0 heriti funcions Ohe tieiPAESo

4 sarch.I~ AtErC AM discussing (i concuret p o roramn issue asI bEUIYCAkgroundhi thisr

ascum? IS CLASSIP IICATION SPG DONAIG eud

- -. SCHEDULE

Development of each high-level approach includes development of required
operating system interfaces. With the warning that choosing the best
approach requires empirical evaluation, a concurrent treesearch algorithm
for the eight-puzzle is presented.

Accession For
NTIS qPA&I
DTIC TA'.i
Uinannocinc-d l
Just if t i-. n

0

Distritut ,.ion/

Availability Codes

Avila2d/or
Di st Special

OD ForfU 1473
5/4 01022fn14-6601 secuelt'wCLAMPgCATGIIgwof vst ufte"OR Does .#.....d1

Approved for public release, distribution unlimited

Development of a Concurrent Tree Search Program

by

Curt Nelson Powley
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
October 1982

Author: _ _

Approved by:
- '--Thesis Advisor

. Second Reader

Chairman, Deparotmen f Computer Science

Dean of Scie'nce and Engineering

3

ABSTRACT

Search, especially tree search, is fundamental to the

field of artificial intelligence. Even with good heuristic

functions, the time it takes on a single processor to solve

progressively more difficult tree search problems grows

exponentially and quickly becomes constraining. It seems

reasonable that the use of concurrency should significantly

improve the speed of a tree search. After discussing

concurrent programming issues as background, this thesis

outlines some high-level approaches to concurrent tree

search. Development of each high-level approach includes

development of required operating system interfaces. With

the warning that choosing the best approach requires empirical

evaluation, a concurrent tree search algorithm for the eight-

puzzle is presented.

4

TABLE OF CONTENTS

I. INTRODUCTION 12

A. PROBLEM 12

B. APPROACH 12

C. ORGANIZATION OF THE THESIS 13

II. FUNDAMENTALS OF TREE SEARCH 15

A. THE EIGHT-PUZZLE 15

B. STATES .. 16

C. OPERATORS 17

D. GRAPHS AND STATE-SPACES 18

E. TREES ... 19

F. HOW TO TREE SEARCH 20

1. When a Solution is Found 20

2. Breadth - First Search 22

3. Heuristics 22

G. SEARCH MODIFICATIONS FOR A GRAPH 23

1. Cost of a Solution 23

2. Finding the Optimal Solution 25

3. Avoiding Duplication of States 26

H. CHAPTER SUMMARY 27

III. CONCURRENT PROGRAMMING ISSUES 29

A. MUTUAL EXCLUSION 30

1. The Problem 30

°5

a. Train Example 30

b. A Computer-Oriented Example 31

2. Approaches to Mutual Exclusion Problem 32

a. Automatic Mutual Exclusion Will Not
Work 32

b. Point of View is Code, Not Shared
Resource; Critical Region 33

c. Enforcement of Critical Regions 34

(1) Variable Associated with the
Processes 34

(2) Storage Interlock 35

(3) Variable Associated with the
Resource 36

(a) Test-and-Set Instruction 36

(b) P and V, Semaphores 37

(c) Mutual Exclusion on Semaphores
Themselves 41

(d) P and V Versus Test-and-Set ... 42

3. Meaning, Mutual exclusion, and Abstract
Data Types 42

a. Meaning: Sequential Versus Concurrent
Programs 42

b. Separating "What" from "How" 43

c. Monitors 44

d. Abstract Data Types 45

e. Abstract Data Types and Mutual
Exclusion 46

6

f. An Example -- Mutual Exclusion on a
Priority Queue 0 * .. 48

g. Incorporating Mutual Exclusion in
Abstract Data Types -- Recap 50

4. Mutual Exclusion Summary 50

B. PRECEDES RELATION 51

1. Example 52

2. Activity Graphs 52

3. Approaches to Precedes Type Concurrency ... 53

a. Internally Coordinated Processes 53

b. Externally Coordinated Processes 54

(1) CoBegin/CoEnd 54

(2) Precedes Relation Specifications 56

C. SYNCHRONIZATION 57

1. The Problem 57

a. Racetrack Example 58

2. Approaches to Synchronization 59

a. Path Expressions 59

b. Shared Variable 60

c. Eventcounts and Sequencers 61

D. COMMUNICATION BY MESSAGES 64

1. Restricted Messages 64

a. Eventcounts, Await, and Advance 64

b. Semaphores, P and V 65

c. Semaphores Versus Eventcounts 66

2. Unrestricted Messages 68

7

a. Categorization of Messages 69

(1) Broadcast Versus Consumable
Messages 69

(2) Broadcast Messages Locally
Consumable 69

(3) Broadcast Messages Queuing
Versus Superceding 70

(4) Specifying Receivers of a Message . 70

(5) Blocking 70

b. A Suggested Message System 71

(1) Message Types 71

(2) Operators 72

(3) Specification of Receiver o......... 73

(4) Syntax 73

(a) Operators 73

(b) Declarations 74

(5) Example: Multiple Producers,
Multiple Consumers with Buffer 76

3. Advantages of Using Message Passing 78

E. CONCURRENT VERSUS DISJOINT PROCESSES:
NONDETERMINISM 80

1. Precedes Relation Example 81

2. Mutual Exclusion Example 82

3. Optimal Eight-Puzzle Example 83

4. Non-Optimal Eight-Puzzle Example 84

5. Nondeterminism Recap 86

F. CHAPTER SUMMARY 87

8

IV. DEVELOPING A CONCURRENT TREE SEARCH PROGRAM 89

A. THE NEED TO CONSIDER THE UNDERLYING
ARCHITECTURE 89

B. DIVISION OF TREE SEARCH AMONG PROCESSES 94

1. Shared Frontier Approach 94

2. Division of Tree Approach 94

C. MEMORY MANAGEMENT PROBLEMS 96

D. STARTING THE SEARCH 98

E. WHILE THE SEARCH IS IN PROGRESS 101

1. Promulgating the Value of Best Solutions 101

2. Ensuring Uniform Heuristic Distriibutiion 105

a. Using Priorities 106

b. Distributing Frontier Nodes by Process
Creation 109

c. Distributing Nodes by Passing 109

d. Detecting Hot Processes Ill

e. Uniform Heuristic Distribution Summary 114

3. Perhaps a Limited Global Frontier 116

4. Memory Overflow 117

F. FINISHING THE SEARCH 119

1. Recognizing that the Search is Completed .. 119

2. Identifying the Best Solution 120

3. Outputing the Best Solution 121

G. CHAPTER SUMMARY 122

9

- ----- ------------------ ,--

V. A CONCURRENT TREE SEARCH ALGORITHM 124

A. APPROACH 124

B. HIGH-LEVEL VIEW 125

C. ON THE STRUCTURED USE OF MESSAGES IN PROGRAMS . 127

D. ALGORITHM SYNTAX 130

E. EXPLANATION OF ALGORITHM 139

1. Outline 13

2. During Search 14

3. Start Up 14

4. Completion of Search 143

5. Solution Output 144

6. Message Declarations 147

F. CHAPTER SUMMARY 147

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 148

A. THESIS SUMMARY 148

B. BACKGROUND SUMMARY 149

C. CONCLUSION 152

D. RECOMMENDATIONS 152

APPENDIX A: IMPLEMENTATION OF A CONCURRENT PRIORITY
QUEUE USING A HEAP 154

APPENDIX B: DERIVATION OF POURER/TAKER ALGORITHM WITH
EVENTCOUNTS AND SEQUENCERS 161

LIST OF REFERENCES 163

INITIAL DISTRIBUTION LIST 166

10

"Now"

LIST OF FIGURES

Figure l. The Eight-Puzzle 16

Figure 2. An Example Eight-Puzzle Problem 16

Figure 3. P and V Implemented With Test and Set 40

Figure 4. P and V Algorithm With P and V as Critical
Regions 41

Figure 5. Activity Graph 52

Figure 6. Sender/Receiver Problem Solved By Eventcounts
and by Semaphores 67

Figure 7. Typical Multiprocessor System 93

Figure 8. Concurrent Tree Search Program 132

11

I. INTRODUCTION

A. PROBLEM

Tree search, as typified by the eight-puzzle problem, is

fundamental to the field of artificial intelligence. Even

with good heuristic functions, the time it takes on a single

processor to solve progressively more difficult tree search

problems grows exponentially and quickly becomes

constraining. It seems reasonable that the use of

concurrency should significantly improve the speed of a tree

search.

The term "concurrency" denotes a broad range of topics.

Concurrent studies are ongoing in concurrent architectures,

automatic implementation of concuFrency in sequential

programs, and concurrent programming. This thesis deals with

improving a tree search by writiing a high-level concurrent

tree search program. It is implicitly assumed that the

program is to be written in an imperative language such as

Pascal, but most of the discussion is also applicable to

applicative languages such as LISP.

B. APPROACH

A first impulse might be to write and implement a

concurrent tree search program without first evaluating the

12

adequacy of the available concurrent programming tools. A

better approach is to consider if existing concurrency tools

provide an adequate high-level approach for writing an

effective concurrent tree search program. If they do not,

then a high-level approach should be developed as part of

writing the tree search program.

This thesis evaluates available concurrency tools and

aproaches and finds that they are inadequate for writing a

high-level tree search program which makes effective use of

conventional architectures. Accordingly, different issues

involved in writing a concurrent tree search are explored

while at the same time considering different high-level

approaches as candidate frameworks for writing the program.

An algorithm is presented based on some of the tools and

approaches developed, but the reader is cautioned that

empirical testing is necessary to determine the best approach

and the best program.

C. ORGANIZATION OF THE THESIS

In this introduction the problem has been stated and it

has been placed in the context of the need to ensure an

adequate high-level approach to the problem. Chapter Two

* explains as background the fundamental tools of tree search.

As a prelude to developing a tree search program, Chapter

Three discusses concurrent programming issues including

available tools and several representative high-level

13

approaches. Chapter Four states the key problems which must

be solved for a concurrent tree search program to be

effective on conventional architectures. In conjunction with

solving the problems, high-level approaches including

necessary operating system interfaces are developed. With a

sound basis for understanding concurrent programming and

concurrent tree search problems, Chapter Five presents a

high-level algorithm for concurrent tree search. Finally,

Chapter Six summarizes the thesis and puts forth conclusions

and recommendations.

14

II. FUNDAMENTALS OF TREE SEARCH

Explained in this chapter are the basic techniques of

tree search. The eight-puzzle is used as an example of tree

search for this chapter as well as for the entire thesis.

Nilsson's textbook, Problem Solving Methods in Artificial

Intelligence [Nils7l] is the reference on which this chapter

is based.

Solving puzzles and games are often the subject of

artificial intelligence research. As Minksy says, "It is not

that the games and mathematical problems are chosen because

they are clear and simple; rather it is that they give us,

for the smallest initial structures, the greatest complexity,

so that one can engage some really formidable situations

after a relatively minimal diversion into programming."

[Mins68: p. 12)

A. THE EIGHT-PUZZLE

A puzzle which is frequently used as the basis for

computer tree search programs is the eight-puzzle. The

eight-puzzle consists of eight numbered, moveable tiles in a

3x3 frame of nine cells. See Figure 1. Since there are nine

cells in the frame and eight tiles in the cells, one of the

cells is always empty. The empty cell is called the blank.

15

Any adjacent tile can be moved into the blank, in effect

"moving" the blank also.

2 1 6

4 a 8

7 5 3

Figure 1. The Eight-Puzzle

The eight-puzzle problem is how to change an initial

configuration of tiles into a goal configuration. Consider

the initial and goal configuration of Figure 2. A solution

to that problem would be an appropriate sequence of moves

such as: "move tile 5 up, move tile 7 right, ... , etc."

2 1 6 2

4 a 8 into 4

7 53

Initial Goal

Figure 2. An Example Eight-Puzzle Problem

B. STATES

In developing approaches for solving arbitrary eight-

puzzle problems, it helps to formalize the elements of the

problem. A particular configuration of the tiles is called a

16

state. There is a finite, although large, number of possible

eight-puzzle states. An eight-puzzle problem consists of an

ordered pair of states (one the initial state, one the goal

state) drawn from the set of all possible states. The set of

all possible eight-puzzle problems, then, is the set of all

ordered pairs of states constructable from the set of all

states. This set of possible problems is also finite but

large.

Note that a problem in which both the initial and goal

state are the same is a trivial problem, as no move is

required. It should be pointed out, however, that such a

trivial problem has an infinite number of solutions: any

sequence of moves which changes the initial state into other

states and back to the initial state is a solution.

Similarly, any problem which has a solution has an infinite

number of solutions. It is also worth mentioning that some

problems have no solutions, i.e., it is impossible to move

from certain initial states to certain goal states.

C. OPERATORS

A move which changes one state to another is called an

operator. There are four operators: they have the effect of

"moving" the blank up, down, left, or right (it is sometimes

easier to think in terms of moving the blank rather than

moving the tile; the notion is similiar to thinking of hole

17

- - -.

movement rather than electron movement in transistor theory).

For a given state, not all operators may be useable. For

example, if the blank is in the "upper-right corner" of the

puzzle, it can only be moved left or down. In fact, the only

states for which all operators are useable are those with the

blank in the center tile.

An eight-puzzle problem, then, is specified as an initial

state and a goal state. A solution to a problem, if one

exists, is a sequence of operators which when applied to the

initial state produce the goal state.

D. GRAPHS AND STATE-SPACES

From a given initial state, certain operators may be

applied to produce other states. From each of these other

states, operators may be similarly applied to produce more

states. This process can be continued ad infinitum (although

only a finite number of states are reachable). It is useful

to think of this potential expansion of an initial node as a

graph. The graph contains nodes corresponding to states and

directed arcs between the nodes corresponding to operators.

Such a graph is implied for each node and it correspcnds to

the space of states reachable from that node. Any two states

which can be reached from one anothet (i.e., a solution

exists to the problem consisting of those two states) have an

identical state-space graph. It turns out that there are

only two connected state-space graphs for the eight-puzzle

18

(which implies that the set of states can be partitioned into

two disjoint subsets such that any state in one subset is

unreachable from a state in the other subset).

To solve an eight-puzzle problem, one applies operators

to the initial state, and to states produced from the initial

state until a goal state is found. This corresponds to

making explicit certain parts of the implicit state-space

graph associated with the initial state. Solving an eight-

puzzle problem, then, corresponds to searching (making

explicit) an implicit state-space graph.

E. TREES

It is helpful to think of the state-space graph as a

tree. A tree is a special type of graph with the following

characteristics. In a tree, there is one node, called the

root node, which has no parent nodes (i.e., no directed arcs

pointing to it). In addtion, all nodes, other than the root,

have exactly one parent node. There is an implicit state-

space tree associated with each initial state, with the root

node of the tree corresponding to the initial state.

Moreover, there is a unique path from the root node to each

node in the tree. This path to a node corresponds to the

sequence of operators (arcs) and resultant states (nodes)

which transform the initial node into that node. Hence, a

path from the root node to a goal node specifies a solution

19

to the problem consisting of the root node and the goal node.

Because there may be many different paths from an nitial

state to any other state, the state-space associated with an

initial state is not actually a tree. However, by thinking

of it as a tree, the following discussion on how to search is

simplified. Considerations which are necessary to account

for the fact that the state space is a graph but not a tree

will be discussed separately.

F. HOW TO TREE SEARCH

Searching a tree consists of applying operators to nodes

reachable from the root node. The act of applying an

operaitor to a node is called expanding a node. The node

expanded is the parent node and the resultant nodes are its

children. At any instant during the search of an implicit

tree, there is a portion of the tree which has been made

explicit. The explicit part of the tree consists of nodes

which have been expanded and those which have not yet been

expanded. Those nodes which have not yet been expanded are

the leaf nodes, or frontier, of the explicit tree. It is

from the frontier that the next node to be expanded must be

chosen. Thus, the order in which nodes a-e chosen from the

frontier determines the order of search of the implicit tree.

1. When a Solution is Found

When a goal node is found during expansion of a node,

a solution has been found. The solution is the path

20

(sequence of operators) from the root node to the goal node.

In a computer program, nodes are typically represented by

unique records. With this representation, which is used for

this thesis, it is necessary to include within each node

record some means of determining its parent, e.g., a pointer.

The pointers can be followed from the goal to the root node

to construct the solution. However, since the solution begins

at the root node and finishes at the goal node, following

pointers in the opposite direction (from the goal to the root

node) traces a solution in "reverse" order. One way to put

the nodes in the right order is to stack them as they are

followed from goal to root node. When the nodes are

unstacked they are in the right order. Note that the

solution actually consists of a sequence of operators, so

outputing the puzzle states does not explicitly specify a

solution. For re-constructing the solution operators, it is

useful to place in each node record (except the root) a

representation of the operator which produced that node. In

the solution output, then, the state representation of the

node is preceded by the operator which produced the node.

Such , solution output would produce the sequence: initial

state, operator, next state, operator, next state, ... , next

state, operator, goal state. Although it is only necessary

to specify the operators in the solution, including the

intermediate states clarifies the output.

21

Because the implicit state space graph associated

with an initial node is extremely large, methodologies are

needed to produce an effective search for a goal node.

2. Breadth-First Search

One orderly search method is a breadth-first search.

The frontier of the tree is maintained as an ordered list.

Initially, the frontier contains only the root node. The

next node to expand is always chosen from the front of the

frontier list and the children of the expanded node are

always placed at the end of the frontier list. The effect of

this approach is to expand all the nodes of a particular

depth in the tree before expanding any deeper nodes.

3. Heuristics

In a breadth-first search, all the nodes at depths

less than the goal node are explored. As a result, the

number of nodes to be explored grows exponentially with

increasing depth of the goal node. This implies that time

and space requirements for a single processor become

constraining for difficult problems. The problem with

breadth-first search is that the tree is explored blindly

with no intelligence involved in deciding which nodes of the

frontier to expand next. A way to improve the search is to

associate with each node a value, called the heuristic value,

which reflects the liklihood that the node is part of the

solution path. By ordering the frontier by heuristic value

22

of nodes, the tree can be explored in a more intelligent

order. The heuristic value is estimated by applying a

heuristic function to the state of a node. The lower the

heuristic value of a node is, the greater is the liklihood

that a node is on the solution path. A simple example of a

heuristic function is one which counts the number of tiles

that are out of place with respect to the tiles of the goal

node. It is stressed that heuristic functions are estimates,

and thus may sometimes be misleading. If a candidate

heuristic function reduces the search effort from that

required for a blind search, then it is worth using.

G. SEARCH MODIFICATIONS FOR- A GRAPH

1. Cost of a Solution

In a tree, there is only one path from the root node

to the goal node. But in a graph there are many paths and

thus many solutions. When there is more than one solution,

it is helpful to compare them. A cost is associated with

each solution and a solution with the lowest cost is an

optimal solution. In the eight-puzzle, cost may be simply

defined as the number of operators in the solution. In a

graph, this is equivalent to the number of arcs in the

solution path. Thus a solution of eight moves has a lower

cost than a solution of ten moves.

23

- -' .. u--.-- -----.-------------.--- ,--

When there is more than one possible solution, it is

desirable to order the frontier by the estimated cost of each

frontier node. By "cost" of a frontier node is meant the

cost of the best solution constrained to go through that

node. It can be seen that this cost is the sum of two

components: the length of the shortest path from the root

node to the frontier node under consideration, and the length

of the shortest path from the frontier node to the goal node.

The first component of the cost can be estimated as the

length of the path followed in producing the frontier node.

It is only an estimate in a graph because there may be a

shorter path. Since the best path can be no worse than a

path already found, this estimate is an upper bound on the

length of the shortest path from the root node to the

frontier node. This estimate can be inserted into a node

record when it is created: the estimate for a child is

simply the estimate of the parent plus one.

The second component of the cost of a frontier node

is the length of the best path from the node to the goal

node. This cost can be estimated with a heuristic function

similiar to that discussed earlier.

Using Nilsson's notation [Nils7l: pp. 57-59], let f,

g, and h be functions such that f(n) = the cost of the best

solution constrained to go through node n, g(n) = cost of

24

the best path from the root node to node n, and h(n) = the

cost of the best path from node n to the goal node. Then

f(n) = g(n) + b(n)

Let the "hat" character "'" placed over a letter

representing a cost denote an estimate of that cost. Then an

estimate of the cost of the best solution constrained to go

through node n is
A A A

f(n) = g(n) + h(n)

The function , then, is composed of the length of the best

path already found from the root node to n plus the heuristic

estimate of the best path from n to the goal node. ? is

called the evaluation function and can be used to order the

frontier nodes so that the next node is the one most likely

to be on an optimal solution path.

2. Finding the Optimal Solution

When a solution is found in a tree, it must be the

optimal solution because there is only one solution in a

tree. When a solution is found in a graph, it may not be

optimal since there are many solutions (optimal and non-

optimal) in a graph. Sometimes, it is sufficient to find any

solution, but more often it is desirable to find an optimal

solution. Since the existence of one solution in a graph

implies that there are an infinite number of solutions, some

way is needed to control the search for an optimal solution.

In a search which uses the evaluation function to order the

25

r PPf

frontier, the search can be controlled by updating the

frontier each time a solution is found. The update consists

of throwing away all nodes in the frontier with a higher

estimated cost than the actual cost of the best solution

already found. The search ends when the frontier is empty.

The problem with updating the frontier by discarding

nodes with a higher estimated cost than a solution found is

that an optimal solution is not guaranteed. A frontier node

on an optimal path will be discarded if the evaluation

function estimates its cost to be higher than a solution

already found. It seems intuitively correct that if an

evaluation function never over-estimates the cost of a path

from a frontier node to the goal node, this won't happen.

That is, if h is a lower bound on h, an optimal solution is

guaranteed to be found. This intuitive conclusion is correct

and a proof can be found in Nils7l (pp. 59-61).

3. Avoiding Duplication of States

Another consideration for searching a graph is to

avoid creating different records which represent the same

state. In a graph, because there is more than one path to a

node, the same node may be found on different paths. If a

node is found which has been found before, only the node

record representing the better solution path should be kept.

To determine if the state of a node has been

previously found, it is necessary to check all node records

26

which have been created. The frontier list contains those

node records which have been created but not expanded. It is

also necessary to maintain a list of all node records which

have already been expanded. Nilsson calls this list the

closed list [Nils7l: p. 48]. When creating a new node

record, then, both the frontier list and closed list are

checked to see if a node record with the same state exists.

If one does, the node record with the best associated cost is

kept.

H. CHAPTER SUMMARY

The term "tree search" is used loosely in the rest of

this thesis to refer to graph search. The type of tree

search being considered is typified by the eight-puzzle

problem. Thus, this thesis does not apply directly to AND/OR

graph searches (which are also described in Nils7l).

A good example of a puzzle requiring tree search is the

eight-puzzle. Configurations of the puzzle are represented

by states. Operators are used to map one state to another

state. Searching for a solution to an eight-puzzle problem

is associated with making explicit parts of an implicit

state-space tree. The use of heuristics significantly

reduces the time and space required to solve such problems.

If any solution to an eight-puzzle problem exists, then

numerous solutions exist and it is desirable to find an

optimal solution. Using an evaluation function which

27

contains a heuristic function that is a lower bound on the h

component of cost guarantees that an optimal solution will be

found.

28

III. CONCURRENT PROGRAMMING ISSUES

The notion of concurrent processes is an outgrowth of

operating system design. Solutions to concurrent programming

problems have only recently begun to incorporate high level

tools and approaches suitable for applications programming

rather than systems programming. An overview of some of the

key issues and techniques in concurrent programming is

presented in this chapter. The problem of mutual exclusion

is discussed first since it is a fundamental issue and

illustrates some key differences between concurrent and

sequential programming. Although solving the mutual

exclusion problem paved the way for development of concurrent

programming tools, mutual exclusion should be viewed as a low

level tool upon which more sophisticated approaches can be

based. With this in mind, the next two sections present high

level approaches to problems which both involve ordering of

events: precedes relation and synchronization. Some tools,

such as the use of eventcounts and sequencers, can be used to

implement these orderings and are discussed. Section four

p, discusses communication by messages as a fundamental

concurrency tool. A framework for categorizing message types

is developed and the syntax for a message system is

introduced. Lastly, the differences between sequential and

concurrent programs are further illustrated by considering

29

-- ---- , - ---.---

the degrees of non-determinism which can be found in

concurrent programs.

It is assumed that the reader is familiar with the basic

notions of process and resource. Definitions for these can

be found in Cali82. In this thesis, the term "concurrent"

means "overlapping in time", whereas the term "simultaneous"

means actually occurring at the same time".

A. MUTUAL EXCLUSION

1. The Problem

a. Train Example

The following example introduces the notion of

mutual exclusion. Two trains have separate routes except for

one small section of shared track. Obviously, a train must

have exclusive access to the section of track it is on at any

given time; i.e., all trains must mutually exclude each other

in their use of track. (The track is a resource which allows

only one user at a time; there are other resources such as

movie screen, which allow more than one simultaneous user.)

The trains are running asynchronously--the speed

of their engines may vary (even stop) at random. To prevent

a collision, the trains must somehow be synchronized with

respect to the shared section of track. That is, at least

some synchronization must be introduced into an asynchronous

situation.

30

The essence of the mutual exclusion problem is to

somehow prevent simultaneous use of a shared resource. That

two trains should not collide is obvious. The following

computer example illustrates a non-obvious need to enforce

mutual exclusion.

b. A Computer-Oriented Example

Two processes are running at asynchronous speeds.

Each process includes the statement V <-- V + 1, where V is a

shared variable (resource). It is clear that the intent of

V <-- V + 1 is that after the statement's execution the value

of V should be one greater than had the statement not been

executed. But, this intent may not be realized. For a

conventional computer, the high level statement V <-- V + 1

will be translated into several machine instructions. The

value of V is read, incremented, and then the new value is

stored into V. When two processes execute the machine

instructions of V <-- V + 1 concurrently, they may both read

and increment before storing. (The undesired result is to

lose one of the increments). Such a possibility indicates

the need to ensure that the several actions of the statement

V <-- V + 1 are inseparable,. That is, the processes must

mutually exclude one another during the statement execution.

But this conclusion is not obvious. Since the meaning of

V <-- V + 1 is obvious, why should the meaning not be

31

realized when the statement is executed concurrently? This

question will be discussed at a later point.

A situation as described above in which the

outcome may vary improperly due to changes in the relative

speeds of processes is called race. (It should be mentioned

that the term "race" is used inconsistently in the

literature. Sometimes it is used to mean a situation which

can vary (properly or improperly) due to changes in relative

process speeds, rather than a situation which varies

improperly. Improper variance is a vague notion because the

properness of a situation is relative to the intent of the

programmer. However, the term race will imply improper

variance in this thesis because this usage better fits the

spirit of the discussion.)

2. Approaches to the Mutual Exclusion Problem

a. Automatic Mutual Exclusion Will Not Work

A first solution to the mutual exclusion problem

might be to automatically detect accesses to shared resources

and ensure that such accesses are serialized in time. For

example, a compiler could easily detect that a statement

V <-- V + 1 involves a shared variable and then ensure that

the execution of this statement mutually excludes any other

statements involving the shared variable (how the mutual

exclusion can be implemented has not yet been discussed).

But, just as the statement V <-- V + 1 involves several

32

inseparable actions, what if this statement were embedded in

a group of inseparable statements? Suppose that V is an

array of size N, the statements

DO FOR i <-- 1 to N

V(i) <-- V(i) + 1

END DO

might have been written with the intent of updating the

entire array at once. If another process were allowed to

access the array in the midst of an update, it would read an

unintended statement.

One might be tempted to let the compiler check

for such "DO FOR" loops and ensure mutual exclusion on the

loop. But, what if the loop were embedded in another loop?

At what level does the compiler stop? Arguments for

automatic enforcement of mutual exclusion miss the point.

Although the need for mutual exclusion can be inferred, which

section of the code needs to be mutually exclusive depends on

the programmer's intent, i.e., the purpose of the code. This

intent is not detectable.

b. Point of View is Code, Not Shared Resource;
Critical Region

It is worthwhile to explicitly discuss something

which until now has only been implied. Mutual exclusion is

always associated with some shared resource. Therefore, it

is tempting to view the mutual exclusion problem solely from

33

the point of view of the shared resource and assert that as

long as no two or more processes simultaneously use the

resource, the mutual exclusion need has been satisfied. But,

as illustrated by the V <-- V + 1 example, the mutual

exclusion involves certain "entire uses" of a resource. That

is, the mutual exclusion involves sections of code within the

processes that use the resource. These sections of code for

which mutual exclusion is required are called critical

regions. Again, note that critical regions are associated

with shared resources; a critical region does not refer to a

section of the shared resource. Thus, a definition of a

critical region can be expressed as follows:

Critical Region - A group of actions involving one or

more shared resources such that the group of actions must

be indivisible with respect to some other actions

involving the same resources.

c. Enforcement of Critical Regions

(1) Variable Associated with the Proccesses.

Consider two processes which have critical regions associated

with a shared variable. A first attempt at enforcing mutual

exclusion for these critical regions might be for each

process to have a boolean variable which it changes to true

if that process is in its critical section, or to false

otherwise. These boolean variables are shared between two

processes. A process enters its critical section only after

34

ensuring that the other processes' boolean variable is false

(implying that the other process is outside its critical

section). The problem with this attempted solution is the

same one that occurred in the V <-- V + 1 example: the

actions of getting information and taking action based on

that information are separable. Both processes can read that

the other is outside its critical section and then each enter

its critical region. Using variables associated with the

processes, Th. J. Dekker [Dijk68A] found a solution to the

critical region problem. Although inelegant, this solution

paved the way for better approaches by demonstrating that the

mutual exclusion problem was solvable.

(2) Storage Interlock. The astute reader will

have raised another question about the solution discussed

above. Will not simultaneous read and write accesses to the

shared boolean variables cause race as it did in the

V <-- V + 1 example? In that example, race was caused

because the V <-- V + I statement was translated into several

machine instructions. The machine instructions could be

interleaved with other machine instructions; however single

machine instructions such as read and write cannot be

divided. At the lowest level, hardware provides this type of

mutual exclusion called storage interlock [Cali82]. Storage

interlock ensures only one machine instruction at a time can

access a shared variable, hence, simultaneous access is

35

impossible. Computer-oriented solutions to the mutual

exclusion problem rely eventually on storage interlock.

(3) Variable Associated with the Resource.

Dekker's solution [Dijk68A] to the mutual exclusion problem

was based on variables associated with each processes'

critical region. By changing the point of view from that of

the processes' critical region to that of the shared

resource, the solution becomes more elegant.

(a) Test and Set Instruction. Since criti-

cal regions are associated with a shared resource (or group

of resources), it makes sense to associate a shared variable

with the resource. This variable can be viewed as a door to

a critical region involving the resources associated with the

door. Either the door is open or shut. A process checks the

position of the door until it is open, then it shuts the door

and enters its critical section. The problem, again, is the

separation of checking a value and changing it.

The Test-and-Set (TS), instruction

introduced by IBM, provides a hardware solution to this

problem. In one indivisible instruction, it reads the value

of a variable and writes another value to it. In effect,

with this instruction, a process can read the position of the

"doors and, as part of the same action, shut it (whether it

was initially shut or open). If the door was open, the

process enters its critical section; otherwise it attempts to

36

"test and set" the value of the door again. Let the door

variable be a boolean variable called D, where D equal to

true corresponds to open and D equal to false corresponds to

shut. Assume TS(D) reads D and changes it to false. Mutual

exclusion of a critical section is enforced by the algorithm:

REPEAT /Loop until door is open/
door-open <-- TS(D)

UNTIL door-open
7C-ritical Region/
D <-- TRUE /Re-open door for another process/

D is initialized to true (door open) to allow one of the

processes to initially enter its critical section.

This algorithm is a solution to the

mutual exclusion problem. It is based on the hardware mutual

exclusion of both the test-and-set and the assignment

(D <-- true) instructions. A disadvantage of this solution

is that processes waiting to enter their critical section

must repeatedly check the value of the door variable. This

unproductive repetition is known as busy waiting.

(b) P and V, Semaphores. The nature of the

Test-and-Set solution to mutual exclusion of critical

sections can be summarized as follows: at the entry point to

the critical section, a process is blocked from entering

until the "door" is "open"; when a process leaves its

critical section, it re-opens the door. Note the connection

between exiting and entering. When one process exits,

37

precisely one other is allowed to enter. The exiting process

communicates with the entering process by changing the

position of the door. The entering process receives this

information by continually checking the position of the door

(busy-waiting).

Thus, when a process initially tries to

enter its critical section, either it can enter immediately

or it must wait until an exiting process communicates that

the door is open. To eliminate busy waiting, it would be

desirable to have the entering process "go to sleep" if the

door was not open, and have an exiting process directly

signal one of the sleeping processes to "wake-up".

Dijkstra's P and V operations [Dijk68A allow exactly that.

P and V operate on a semaphore, which

can be thought of as a shared integer initialized to some

value. A binary semaphore, as opposed to a general

semaphore, is one which can take on values of only zero cr

one. For mutual exclusion, only a binary semaphore is

needed. Accordingly, the more general types of semaphore

will not be discussed. *

Several operating system actions must

be understood before proceeding with the discussion on P and

V. Blocking a process means that the operating system has

taken the name of the process off the list of processes which

are eligible to be run. That is, when a process is blocked,

38

it will not be allocated any computer time. Waking u a

process means that the operating system has placed the name

of the process back on the list of processes which are

eligible to be run.

The semaphore represents the door to a

critical section. It is initialized to one, indicating an

open door. Similiarly, a semaphore equal to zero represents

a shut door. A process entering its critical section

executes P(semaphore). The effect of the P operation is to

block the process if the door was shut (semaphore = 0) or, if

the door was open, to shut the door and allow the process to

continue. A process exiting its critical region signals one

blocked process to wake-up by executing V(semaphore). The

effect of the V operation is to wake-up any process waiting

to enter its critical region and allow it to proceed. If no

processes are blocked, the V operation re-opens the door

(semaphore changed to 1).

Algorithmically, the effect of P and V

can be shown as follows:

P (sem)

IF sem = 1 THEN
sem <-- 0
/enter critical region/

ELSE
-- 7wait for a V operation

to proceed (Block Process)/
END IF

39

V (sem)

IF /there are no waiting processes/ THEN
sem <-- 1

ELSE
/pick a process and tell it
to proceed (Wake-up Process)

END IF

Because blocking of a process and

waking up a blocked process are operating system functions,

both the P and V operations are closely coupled with the

operating system.

Enforcement of a critical section with

P and V can be simply stated as

P (door)
/critical region/

V(door)

where door is a semaphore initialized to one.

Note that P and V have the same

external appearance as Test-and-Set. One could implement P

and V as shown in the following figure.

P(sem) V(sem)

REPEAT door-position <-- false
door-position <-- TS(sem)

UNTIL door-position

Figure 3. P and V Implemented With Test and Set

But this version of P and V does not actually block processes

waiting to enter their critical sections. A more efficient

40

implementation of P and V requires operating system process

management to block and wake-up processes.

(c) Mutual Exclusion on Semaphores

Themselves. The astute reader will note that the P and V

procedures themselves need to be treated as critical regions.

For example, if two processes execute P(sem) and find sem - 1

before either changes the value of sem to zero, both will

enter their critical sections. One solution is to have a

"door" variable called PV-door associated with both the P and

V procedures. Figure 4 shows a correct implementation of P

and V using Test-and-Set.

P(sem)
REPEAT

PV-door-open <-- TS(PV-door)
UNTIL PV-door-open.

IF sem = 1 THEN
sem <-- 0
/ enter critical region/

ELSE
/put myself on list of waiting processes/

END IF
PV-door <-- true / allow other execution of P and V/

V(sem)
REPEAT

PV-door-open <-- TS(PV-door)
UNTIL PV-door open

IF /there are no waiting processes/ THEN
sem <-- 1

ELSE
/pick a waiting process and allow it to proceed
(wake-up process)/

END IF
PV-door-open <-- true.

Figure 4. P and V Algorithm With P and V as Critical Regions

41

(d) P and V Versus Test-and-Set. One might

ask why the more complex algorithm of Figure 4 would be used

rather than the simpler algorithm of Figure 3; both involve

the test-and-set instruction and, thence, busy-wait.

Consider just the P operations shown in Figures 3 and 4. The

difference between them is that the busy-wait of Figure 3

involves busy-waiting the entire time another process is in

its critical region, while the busy-wait of Figure 4 involves

just busy-waiting to execute the P procedure--once executed

the process is blocked waiting for another process to finish

its critical region. A busy-wait for the use of P could be

considerably shorter than a busy-wait for execution of a

critical region. The V operation of Figure 3 requires no

busy-wait because it consists of only one indivisible storage

instruction, whereas the V operation of Figure 4 does require

a busy-wait. However, the potential length of the busy-wait

just due to the P operation of Figure 3 is much greater than

the sum of the potential busy-waits of both the P and V

operations of Figure 4.

3. Meaning, Mutual Exclusion, and Abstract Data Types

a. Meaning--Sequential vs. Concur-'nt Programs

In the introduction to the mutual exclusion

problem, the question was asked: Since the meaning of a

statement such as V <-- V + 1 is obvious, why should the

meaning not be realized in concurrent execution? In other

42

words, what differences between concurrent and sequential

programs make concurrent programming so difficult? This

question will now be addressed.

In a sequential program, the meaning of

statements is implicitly and closely coupled with the

statements. The meaning of V <-- V + 1 is obvious. The

compiler translates V <-- V + 1 into several machine

instructions. When these instructions are executed

inseparably, ,.e., without being interleaved with other

instructions involving the variable V, the meaning of the

statement V <-- V + 1 is preserved. If the meaning of these

three machine instructions is considered separately rather

than as a group, the meaning of the higher level statement is

lost--it is not preserved. Thus, the meaning that was

implied in the environment of a sequential program may not be

preserved when the program is executed concurrently with

other programs.

b. Separating "What" from "How"

How can high-level access to shared resources be

structured so the program is clearer? It is useful to have a

method for specifying what is done and then separating what

is done from how it is done. That is, separate "what" from

"how". A good approach is to use single operations to access

shared resources. An operation would typicaly be a procedure

call; the procedure performs the desired action and enforces

43

mutual exclusion at a lower level. To make the meaning of

the operations clear, a set of associated specifications

should exist. Specifying exactly what an operator/procedure

does can be difficult. The specification must be precise and

the programmer using these lower level procedures must ensure

that his/her intended meaning matches the specified meaning.

For example, V <-- V + 1 could be performed by

A<--I

ADD (V,A)

where the specification for ADD indicates that after its

execution V will be A greater than it would have been had the

ADD not been called. The procedure ADD can then ensure, at a

lower level, that its meaning is enforced within the context

of the compiler, hardware, and operating system.

c. Monitors

Closely related to the above approach is the

concept of monitors (Hoar74]. In a monitor, all concurrent

operations are grouped together with the data structures

affected. An advantage of "textual grouping of critical

regions with the data they update" [Cali82] is the ease of

comprehending the correctness of the concurrent portions of

the program.

In a monitor, however, only one of the procedures

may be executed at a time (each procedure in a monitor is a

critical region). There may be situations where it is

44

desirable to allow concurrency between the procedures in a

monitor. One may introduce complexity by allowing this, but

the complexity would occur at a lower heirarchical level and

might be offset by an increase in efficiency. An example

which allows concurrent operations on a data structure is

discussed later.

d. Abstract Data Types

The notion of separating "what" from "how" is not

a new one. In the design of data structures, for example, it

is an excellent and well-known technique to separate the

specifiction of an abstract data type from its

implementation. A data structure such as a priority queue is

specified in terms of a set of axioms. The high-level view

of the data structure is completely formed by these axioms.

Higher level programs use operators defined by

the axioms to create and access the data structure, but the

implementation of the data structure is hidden to them. This

allows flexibility: the implementation of the data structure

can be changed without changing the higher level program; and

the higher level program need not worry about the lower level

details. Splitting the implementation from the realization of

the data structure also makes correctness proofs about the

data structure and program easier.

45

e. Abstract Data Types and Mutual Exclusion

As explained previously, mutually exclusive

access to shared data structures should be done via high-

level operators. In turn, access to data structures should be

done via high-level operators which present an abstract data

structure view. How should mutual exclusion operations be

related to abstract data structure operations? This section

considers that question.

One approach is for the user of the abstract data

type to implement mutual exclusion in terms of the abstract

data type. That is, mutual exclusion is enforced with

respect to the operations provided by the axioms of the

abstract data type. Operations requiring mutual exclusion

are implemented as a call to a subprogram; the subprogram

establishes a critical region around operations which access

the abstract data type. Thus, for this approach, the user of

the abstract data type is responsible for providing mutual

exclusion and mutual exclusion is provided in terms of the

abstract data type.

Another approach is to incorporate mutual

exclusion within the abstract data type. That way, the user

of the abstract data type would not implement mutual

exclusion; rather, operators on the abstract data type would

incorporate mutual exclusion. Within this approach, the

implementor of the abstract data type has two approaches to

46

4 - --- 4- ----. . -..--------------

incorporating mutual exclusion. The simple approach is to

treat each operation as a critical region. This approach has

the same effect as implementing mutual exclusion in terms of

the abstract data type. The difference is in who is

implementing the mutual exclusion--the user of the abstract

data type or the implementor of the abstract data type.

Rather than treat an entire operation as a

critical region, the abstract data type implementor may

choose a more refined approach and treat only portions of

operations as critical regions. Consider a data structure

operation which may take many steps, such as an insertion

into a priority queue. If insertions could be done

concurrently, perhaps by locking just portions of the data

structure, the potential for a bottleneck of numerous

processes doing insertions could be reduced. However,

implementing mutual exclusion at this low a level may require

additional specifications in the axioms for the abstract data

structure. For example, it may be that concurrent insertions

to a priority queue can be done, but deletions cannot be done

concurrently with insertions. This introduces a new notion

into abstract data types--that of including mutual exclusion

specifications in the axioms for the abstract data structure.

A disadvantage of implementing mutual exclusion

Ointernally" to the data structure is that the mutual

47

4- -- - - -- ---- . -

exclusion becomes coupled with the data structure; one

cannot change the data structure implementation without

affecting the mutual exclusion. Another disadvantage is that

the problem becomes more complex.

f. An Example--Mutual Exclusion on a Priority Queue

The need for including mutual exclusion

specifications in the axioms of an abstract data type can be

made clearer by an example. In a tree search problem such as

the eight-puzzle, the unexpanded nodes of the tree (the

leaves, or frontier) need to be kept in order of next to

expand. An abstract data structure which does this is the

priority queue, a queue in which the "best" value is always

available for removal from the queue. Important operations on

the priority queue are removal of the best item for expansion

and insertion of new items which have just been generated.

One approach to a tree search problem such as the eight

puzzle is to have the frontier of the tree be a shared

priority queue which is accessed by many concurrent

processes. Each process removes a node from the priority-

queue, expands it, checks for a goal node, and inserts non-

goal nodes into the priority queue. It is easy to see that

there is potential for an enormous bottleneck of processes at

the priority queue. If operations on the priority queue take

a significant number of steps and each operation is a

48

critical region, many processes may spend considerable time

waiting to insert or remove nodes; and if each process is

assigned its own processor the use of the processors can

become inefficient. What if there were a way to "lock" only

small sections of the priority queue during each step of an

insertion or deletion so that concurrent insertions could be

correctly done? This might significantly improve the tree-

search program.

Appendix A discusses a means for doing this using

the heap data structure implementation of a priority-queue.

This example illustrates the need for detailed specifications

of the mutual exclusion characteristics. In this case, the

specifications would include: any number of concurrent

insertions are allowed, but only one removal at a time may

take place. The important point is that a programmer using

this priority-queue as a concurrent data structure need not

worry about the data structure implementation and need notIworry about mutual exclusion except to ensure that the

specifications of the data structure satisfy the program's

needs.

If one tries to "optimize" mutual exclusion by

using the data structure implementation, another interesting

consideration arises. One should now consider which data

structures are best for concurrent access. For example, a

heap structure worked fairly well for concurrent access,

49

-1
- ~-- --

whereas another structure might not. Conveniently, a heap is

also optimal for speed of access (it is much better than,

e.g., a linked list). However, it might be that some data

structures are good for speed of operation but poor for

concurrent access, or vice-versa. Picking the best data

structure may become a more demanding exercise.

g. Incorporating Mutual Exclusion in Abstract Data
Types--Recap

Incorporating mutual exclusion in abstract data

types provides useful hierarchial structuring. The user of

the abstract data type is freed from implementing mutual

exclusion, and the mutual exclusion implementation is placed

at a lower hierarchial level. In addition, it allows the

implementor of the abstract data type the flexibility to

increase the efficiency of mutual exclusion by "refining"

critical regions so they encompass less than entire

operations. Allowing this flexibility introduces a new

notion into abstract data types -- including mutual exclusion

specifications in the axioms.

4. Mutual Exclusion Summary

Understanding the mutual exclusion problem is

necessary for concurrent programming. However, the use of

mutual exclusion to control access to a shared resource

causes a bottleneck: only one process at a time may be in a

critical region associated with a shared resource;

so

other processes must wait unproductively to enter their

critical regions. Sometimes, the bottleneck can be reduced

by "refining" the mutual exclusion so that abstract data type

operations can be done concurrently. Better yet, problems

can often be structured so that mutual exclusion is not

required. A synchronization approach orders processes with

respect to a shared resource so mutual exclusion is

unnecessary. In place of using shared resources, message

passing can sometimes be used for communication between

processes. (Synchronization and message passing are

discussed later.)

It is the author's belief that, as a general rule,

the use of mutual exclusion should be avoided if another

equally effective approach exists. If mutual exclusion is

used, it should preferably be implemented at a lower

hierarchial level and preferably be incorporated into

abstract data types.

B. PRECEDES RELATION

This section and the next each present a high level

structuring approach for a concurrent program which is

appropriate for certain types of problems. One of the

simplest types of concurrency programs is one which can be

structured in terms of a precedes relation. The basic notion

of a precedes relation situation can be illustrated by an

example.

51

1. Example

Several groups of people, such as plumbers and

electricians, are building a house. Each group is doing

different jobs, but they have a common interface of the house

they are building. The jobs have certain time-ordering

restrictions. For example, interior plumbing and electrical

must be done before walls are installed. That is, certain

activities must precede others.

2. Activity Graphs

The operations research too! of an activity graph

uses a network diagram which usually depicts exactly this

type of situation. A typical activity graph is shown in

Figure 5.

START 1
3 F

Figure 5. Activity Graph

This chart represents the activities (tasks) involved

in some project (such as painting a house), and shows the

required ordering between the activities. The activities are

represented by the branches between nodes and are labelled by

letters. Each node is called an event and represents the

52

mR l .-

accomplishment of activities preceding that event.

Arrowheads on the branches indicate the sequences in which

the events must occur. Thus, event 4 represents the

accomplishment of activities of A, C, and D. Moreover, event

4 must precede activity E. Activities C and D are not

ordered wita respect to one another and may proceed

concurrently. In a computer program, the activities shown on

the chart could be processes. The entire chart would

represent a computer program consisting of a group of

processes with certain ordering restrictions. In the

simplest case, the processes allowed to run concurrently

would be disjoint, i.e., they would share no resources.

3. Approaches to Precedes Type Concurrency

To coordinate groups of people such as those building

a house, there are two basic approaches. One is to have the

groups coordinate among themselves, e.g., a group knowing

what groups must precede it could wait for signals from those

groups indicating they were done. The seond approach is to

put someone external to the groups in aharge of orchestrating

them. That person would tell groups when to proceed. These

two approaches also apply to a computer program. The former

approach will be discussed first.

a. Internally Coordinated Processes

There are different methods for processes to

communicate among themselves. Message-passing and

53

communication by a shared variable (which requires mutual

exclusion) are two types. Either of these methods could be

used to order a precedes situation. Details of the methods

will be discussed in the next several sections.

The primary disadvantages of the communication

approach to a precedes relation situation are twofold.

First, it requires that the code for the synchronization of

the processes be spread out textually. This scattering of

code makes it difficult to comprehend what is going on; thus,

troubleshooting as well as writing the code is difficult.

Second, the communication requirement integrates the burden

of concurrency control into the high level code. A recurring

theme in concurrent programming is to remove, as much as

possible, the concurrency requirements from high level code.

Placing the code which coordinates the processes at a lower

level and/or grouping it in one place makes the programming

job much easier.

b. Externally Coordinated Processes

The preferred approach, then, to coordinating

precedes type processes is by viewing them externally.

(1) CoBegin/CoEnd. A single construct for doing

this is Dijkstra's CoBegin/CoEnd construct introduced as

ParBegin/ParEnd [Dijk68A].

54

For example:

S1
CoBegin

A; B:
CoEnd
S2

means A and B can proceed concurrently; S1 must precede both

A and B, and A and B must both precede S2.

To represent more complicated situations,

nesting of CoBegin/CoEnd groups is used. The relations

required by Figure 5 are expressed as:

CoBegin
Begin
A; CoBegin C; D; CoEnd; E; G;
End
Begin
B; F;
End

CoEnd

A disadvantage of the CoBegin/CoEnd approach

is that complex situations become confusing to write or read.

Moreover, the CoBegin/CoEnd construct is not powerful enough

to specify some situations. For example, the following

activity graph cannot be specified by CoBegin/CoEnd:

AC

554

55

The "problem" activity in this graph is E. E can proceed

concurrently with A and D, but this cannot be speciified in

addition to specifyiing the constraints between the other

activities.

A construct which is general enough to express

the preceeding activity graph is the FORK/JOIN command pair

described in Conw63. FORK/JOIN will not be described.

(2) Precedes Relation Specifications. The term

"precedes relation" has been used because a simple relation

called precedes can be used to fully specify situations of

the type being discussed. A precedes relation consists of a

set of tuples. Each tuple has two elements where each

element is a group of names of processes. The meaning of

each tuple is simple: the group of processes specified in

the first element must precede the group of processes in the

second element.

Consider Figure 5 again. The required

ordering of activities (processes) can be completely

specified by a precedes relation. The only restriction in

the processes are that some must precede each other. Figure 5

is completely specified by the following precede relation:

j ((A) , (C, D)) , ((C, D) , (E)) , ((E) , (G)) , ((B) , (F)) }

Note that additional tuples such as ((A), (E)) could be added

but are not necessary. The precedes relation is transitive;

56

thus ((A), (E)) is implied by ((A), (C, D)) and ((C, D),

(E)). Additionally, it is implied that A and B are the

starting processes because nothing precedes A or B. It is

similarly implied that G and F are the ending processes. To

make the beginning and ending processes more obvious, it is

useful to incorporate dummy processes called start and finish

and to include ((Start), (A, B)) and ((G, F), (Finish)) in

the relation.

The proposed precedes relation specification,

like the CoBegin/CoEnd construct, has the disadvantage that

it may be confusing to read.

C. SYNCHROwNIZATION

j 1. The Problem

The term synchronization is used in a broad sense to

describe any type of concurrency issue. In this section, the

term is used to mean a way of structuring a problem. A

synchronization approach to a problem involves implementing

an ordering of processes with respect to shared resources,

rather than defending the resources directly by mutual

exclusion. The precedes relation situation discussed in the

previous section can be viewed as a simple type of

synchronization involving no shared resources.

57

a. Racetrack Example

Although contrived, the following example

illustrates the notion of synchronization (it is a "producer-

consumer" type problem). On a circular racetrack, one gallon

buckets are placed at regular intervals. Initially, the

buckets are full (one gallon) of water. Two workers, a

pourer and a taker, are assigned. The pourer's job is to

continuously walk around the track, putting one gallon of

water in each bucket. The taker's job is to continuously walk

around the track, taking a gallon of water from each bucket.

Because the two workers are using the same

buckets (shared resources), their actions affect each other.

Initially, when the buckets are all full, the taker can go

around the track just once before needing the pourer to put

water in the buckets. Similiarly, the pourer cannot start

until the taker has started.

What are some approaches to coordinating these

people? One approach is mutual exclusion. The pourer and

taker could mutually exclude each other in their use of the

racetrack. For example, starting with the taker, the two

could alternately make one entire trip around the racetrack.

A less restrictive mutual exclusion approach would be to

allow just one person at a time to access a bucket. In

either case, some method is required to prevent taking from

an empty bucket or pouring into a full one.

58

The nature of mutual exclusion approaches such as

the ones above is to cause waiting by one person for another

person because of a shared resource. From the point of view

of not wasting the people's time, a more efficient approach

is to synchronize the people so they can work concurrently on

different buckets. The taker could simply follow the giver

forever. Their speeds don't have to be identical; the

restriction is that they don't pass each other. Keeping the

workers the required number of buckets apart without relying

on mutual exclusion is the essence of the synchronization

approach to this problem.

2. Approaches to Synchronization

a. Path Expressions

Path expressions are regular expressions which

describe the allowable ordering of operations with respect to

a shared object. The motivation for path expressions is to

provide high level tools for concurrency control. The

programmer does not have to worry directly about

synchronization primitives, but instead just specifies the

allowable sequences of operations on a shared resource. This

approach is similiar to the precedes-relation approach,

except for the viewpoint. Path expressions are relative to

shared objects, whereas a precedes-relation is relative to a

group of processes. A simple solution to the

racetrack/water-bucket problem using a path expression would

59

specify that for each bucket a pourer must follow a taker,

and that this order may be repeated forever. (This is

expressed as (P;T)* where P represents pourer, T represents

taker, * means "zero or more times", and the expression is

applicable to each bucket).

A significant advantage of the path expression

approach is that it requires no synchronization control in

the code of processes. The disadvantage of path expressions

is that more complex ordering restrictions are hard to

specify. For example, if there were multiple pourers and

takers in the racetrack problem, this approach would not work

because each worker would not know what bucket to access

nextt

b. Shared Variable

The restriction in the racetrack problem is that the

difference between the number of pours and takes stays within

alowed bounds. This restriction is easily enforced in a

computer solution by associating with each process a shared

variable recording the number of operations done by that

process. Before pouring water, the pourer process checks the

difference between the total number of operations it's done

and the total number of operations the taker process has

done. If the number is not within allowed bounds, the pourer

process waits until it is. The taker process does a similiar

thing. Although this solution does not require mutual

60

exclusion of the water buckets, it does require mutual

exclusion of the shared variables. Furthermore, it requires

synchronization within the code of the processes.

c. Eventcounts and Sequencers

Eventcounts and sequencers were developed to

allow a better solution to the type of synchronization

problem being disucssed. The primitive data types and

associated operations are:

NAME DESCRIPTION

DATA TYPE Eventcount Non-decreasing, non-nega-
tive integer

Advance(E) Signals occurence of an
event by incrementing
eventcount E

OPERATIONS Await(E,V) Blocks process until
eventcount E reaches
value of V

Read(E) Reads value of eventcount
E

DATA TYPE Sequencer Non-decreasing, non-
negative integer

OPERATION Ticket(S) Returns a unique "Ticket"
number; used to order
processes

The solution to the racetrack problem using

eventcounts is similiar to the solution using shared

variables. It is a better solution because the synchroniza-

tion is done with higher level primitives which do not rely

on any mutual exclusion. The pourer has associated with it

an eventcount, P, indicating how many pours it has completed.

It has a local variable, i, which also represents how many

61

pours it has completed. The taker has similiar variables.

If N is the number of buckets on the racetrack (or slots in

an array for the typical producer-consumer scenario), then

the solution is given by the following algorithms:

POURER

i <-- 0 / i - number of completed pours/

DO FOREVER

Await (T, i + 1)

Advance (P); i <-- i + 1

END DO

TAKER

i <-- 0 / i = number of completed takes/

DO FOREVER

Await (P, (i + 1) - N)

Advance (T); i <-- i + 1

END DO

A derivation of this algorithm is given in Appendix B.

Note the symmetry of this solution: A process

writes to an eventcount which the other process reads; a

process reads an eventcount to which the other process

writes. Thus there is no write competition.

An important feature of the eventcount solution

is that all operations by the pourer and taker can be done

concurrently. Their operations have been synchronized so

that mutual exclusion is unnecessary.

62

4 -. --.- a J ---

Sequencers and tickets are used to force an

ordering of events. If there were multiple takers following

the pourer around the racetrack, tickets could be used to

order them. Each taker would get a ticket indicating where

to pour, and then wait until pourers with lower tickets were

done. Sequencers and tickets were motivated by the ticketing

operations used in bakeries or other busy stores.

In general, then, a synchronization approach to a

problem, when feasible, is more elegant and efficient than a

mutual exclusion approach which relies on protection of a

resource rather than coordination of the processes. Event-

counts and sequencers are superior to using an ad hoc shared

variable approach since they provide the necessary primitives

such as Await. However, eventcounts and sequencers still

suffer from the necessity to include synchronization control

in the code of the processes.

In the simple example given, the path solution

was the most elegant because it removed the synchronization

from the processes and placed it textually in one place.

However, it is sometimes necessary to consider the efficiency

of implementation of the high level solution. If path

expressions required an underlying mutual exclusion, the

eventcount solution might be desirable. Although the

primitives are required at a higher level, the eventcount

63

,- -- - 0 |

solution to the producer-consumer example guarantees that

mutual exclusion will not be necessary.

D. COMMUNICATION BY MESSAGES

Many solutions to concurrent problems require

communication between processes. For example, a

communication path exists when two processes may read or

write to a shared variable. This section considers

communications done in a more structured, higher level

manner--by messages.

Messages in the most restricted form have no content. As

representatives of this type of message, eventcounts and

semaphores will be compared. Unrestricted messages will then

be considered, and finally, a suggested message system will

be proposed.

1. Restricted Messages

a. Eventcounts, Await and Advance

Eventcounts, along with the advance and await

operations, can be used to communicate information between

processes (eventcounts were discussed in the last section).

What information is exchanged? The advance operation merely

increases the value of an eventcount. Await prevents

proceeding until an eventcount has increased to (or beyond) a

specified value. The information received is simply a lower

bound on the number of advances which have been done. An

advance can be thought of as a signal which contains no

64

information other than the fact that it has been sent: the

existence of such a signal is the message. (Sometimes

messages without information content are called "timing

signals"). The await primitive combines detection of message

existence with a blocking action. By specifying a

relationship between the number of advances done and some

internal variables (such as the number of messages previously

received), the Await operation receives the message that some

relation exists.

b. Semaphores, P & V

P and V operations associated with semaphores

were introduced by Dijkstra as a means of solving the mutual

exclusion problem (discussed in the first section of this

chapter). P and V can be used as a receiver and sender

operation for a message. P (the receiver operation), like

the await operation, combines detection of a message with a

blocking action. Likewise with P and V, the information

exchanged is only the existence of a message.

A semaphore can be thought of as a shared integer

which is initialized to some value. The effect of the signal

operation, V, is to increase the semaphore by one. A P

operation causes waiting until the semaphore is greater than

zero, then decrements the semaphore.

65

, - - - - -

c. Semaphores Versus Eventcounts

Further clarification of how semaphores and

eventcounts work can be achieved by comparing how the two are

used to solve a simple problem. Two processes, a sender and

a receiver, each execute some code repeatedly. At one point

in the sender's code, a message is sent to the receiver; the

message contains no information other than its existence--it

is just a "signal". Similarly, at some point in its code,

the receiver checks to see if a message has been sent; if no

message has been sent, it waits until one is received. Each

time it passes through its code the receiver checks for a new

message; i.e., it doesn't consider previously detected mes-

sages as allowing it to proceed. Note that this problem is a

synchronization type of problem; the sender must pass through

a certain point in its code before the receiver can pass

through a corresponding point in its code. The sender can

get arbitrarily far "ahead" of the receiver, and must always

stay "ahead".

Figure 6 shows solutions for this problem using

first semaphores and then eventcounts.

Although the two solutions are similar, there are

some subtle, but important differences. In the eventcount

solution, only the sender changes the value of the shared

eventcount; the receiver only reads it. But in the semaphore

solution, both the sender and receiver may change

66

0 00 4 04

(1)~ .. 4V > U
A.) -40 0

-4- 0 - 4)~U

0~~

(a W " 0 (L

0L0 000 c

02C0

+ 0

~ O*- - 0 11-1-

ru~ 0 0 2 0(0
V1 - r 2 *-

lad Na rzi- v

'0

4 tic
> > 0~ m -~

~0 2it~ o
rz 4~j 0i - 0 0 -

0 0 -4 0

0 0 ..0

0 tn 004r
Qz: Da MI I W)

4 r- 00)

0 () 0
-- 4 -4 A

z 4trAc

(12

the value of the shared semaphore. Thus there is write

competition between P and V, a situation which complicates

the concurrency considerations.

In addition to the write competition problem in

the semaphore solution, there is a security problem. By

changing the value of the semaphore, the receiver is "broad-

casting" its actions. Contrast this with the eventcount

receiver. It keeps track locally of the number of signals

received and waits till the number of signals sent has the

desired relation with the number received; in this manner,

the receiver does not broadcast its actions in any way. The

await operation is a pure "observer" of events, whereas the P

operation is not. In contrast, both the advance operation

and V operation are pure "signalers" of events. The need for

a both pure observers and pure signalers is a consideration

in designing secure operating systems (Reed791.

2. Unrestricted Messages

Communication restricted by the use of signals whose

content is merely their existence is useful, but sometimes it

is desirable to transmit more information. In a track race,

it is sufficient to signal the runners to start with a

gunshot--they know what to do. On the other hand, it would

be a mistake to send someone to the store without telling

them what to purchase.

68

-- -- ---- • -

a. Categorization of Messages

There are many types of messages. It is useful

to categorize some logical divisions.

(1) Broadcast Versus Consumable Messages. Mes-

sages can be divided into two broad categories: broadcast

and consumable. A broadcast message is available for

everyone with access to it to see. An analog is a message

bulletin board. In the eight puzzle problem, a broadcast

message could be used to promulgate a new best solution. A

consumable message, on the other hand, can be received by

only one process--the message is "consumed" in being

received. If a process in the eight puzzle problem wanted

another process to expand a node, it could use a consumable

message containing the value of the node.

(2) Broadcast Messages Locally Consumable. i

broadcast message is sent to a set of processes, and is

available for all of them to receive. Once a given process

has received the broadcast message, should it be able to

receive it again, or should it perceive that there are no

more messages for it? The answer depends on the purpose of

the message. Accordingly, broadcast messages can be divided

into those that are "locally consumable" and those that

are not. Locally consumable broadcast messages seem the most

useful, but it may be easier to implement broadcast messages

to not be consumable.

69

Note that a locally consumable broadcast

message addressed to only one receiver is equivalent in

effect to a consumable message addressed to one receiver.

(3) Broadcast Messages Queueing vs. Superceding.

Another consideration of broadcast messages is whether newer

ones should supercede older ones. Again, both categories are

useful. If older messages are made obsolete by newer ones,

then a process should only receive the latest message; i.e.,

messages should not queue. On the other hand, it may

sometimes be desirable to queue broadcast messages.

(4) Specifying Receivers of a Message. When a

message is sent, it needs to get to where it is going. How

does one specify the receivers of a message? The intended

receiver may be a single process or a group of processes.

There are two ways to specify the receiver of a message. One

way is to name the receiver. A letter addressed to a person

does this. Another way is to use a common area, or "bin",

for holding the messages--by restricting access to this bin

of messages, the flow of messages is controlled. These two

approaches can be combined--one could specify the name of a

process as well as the name of a bin.

(5) Blocking. The method of receiving a message

is another issue. Should a process trying to receive a

message be blocked until a message is available, or should

there be a means of checking for the existence of a message

70

as a prelude to receiving it? Most suggested primitives for

message reception involve blocking a process untiil a message

exists. An exception is the Read operation associated with

eventcounts. Read can be used in lieu of the Awaiit

operation when it is desired to obtain the value of an

eventcount without being blocked. A more general primitive

for checking the existence of a message is proposed in this

paper.

Similar to the notion of blocking a process

receiving a message is the notion of blocking a sending

process. A program designed with a fixed size queue for

accumulating messages sent but not received would need to

block a process sending a message to a full queue. This

blocking necessity may be inherent in some message types, but

it may be desirable to keep the queue structure and potential

blocking at a lower hierarchial programming level so that the

higher level processes need not be aware of them.

b. A Suggested Message System

This section suggests the syntax and rules for a

message system based on some of the features previously

discussed.

(1) Message Types. Three message types are

available: consumable, broadcast-queue, and broadcast-

supercede. A consumable message can be received by only one

71

process; once received, the message is no longer available

for other processes (including the one that received it).

The two types of broadcast messages, broadcast-queue and

broadcast-supercede, are "locally consumable". All members

of the audience to which a message is broadcast can receive

the message, but each process can receive the message only

once. In broadcast-queue messages, new messages do not

supercede old ones. In broadcast-supercede messages, new

messages do supercede old ones.

(2) Operators. There are two receive opera-

tors: await-receive (await for short) and exist-receive

(exist, or E, for short). Await-Receive (<message

specification>) where <message-specificatioon> refers to the

syntax required to describe the message (contents and

address), blocks the process using it until a message of

<message-specification> is received.

The blocking characteristic exhibited by

await-receive is fundamental to most message receipt

primitives which have been previously suggested in the

literature (as mentioned, the Read operation associated with

eventcounts is an exception). For example, Dijkstra's P

operator [Dijk68A] (used with semaphores) and Reed and

Kanodia's await operator (Reed79] (used with eventcounts)

each block the calling process until a condition is

satisfied. This blocking characteristic is useful if the

72

• • • • -

programmer doesn't want the program to proceed unless some

condition or event occurs. However, often the converse

situation is desirable: when the program should continue

unless some condition or event occurs. For this type of

situation, the exist-receive operator is introduced. Exist-

Receive (<message-specification>) returns a boolean value--if

true, message has been received; if false, no message has

been received. Using this operator, a program can check for

external messages, and take action when they exist.

In addition to the reception operators,

there is one sending operator. It is send (<message-

specification>).

(3) Specification of Receiver. The receiver is

specified by the "bin" method previously discussed, and can

additionally be specified by name. The notion of a message

bin is that messages can be directed by specifying a common

bin-area. The bin-area is specified implicitly by the

declaration of an instance of a message previously declared.

(This is clarified in the following section on syntax.)

(4) Syntax. The message system will be clarified

by discussing its syntax.

(a) Operators. The syntax of the three ope-

rators is listed below:

73

EXIST-RECEIVE (<MSG-NAME>, <SENDER-NAME>*)

AWAIT-RECEIVE (<MSG-NAME>, <SENDER-NAME>*)

SEND (<MSG-NA1ME>, <RECEIVER-NAME>*)

NOTES

1. The "*" indicates zero or more occurrences of this

item may be used.

2. <Sender-name> and <receiver-name> could include such

operating system primitives as children and parent

(of dynamically created processes).

(b) Declarations. Declarations are required

both within the program and within each process. (By

"program" is meant a single program in which any number of

concurrent processes may be declared and initiated).

Declarations required within a program are Pascal-like and

are listed below:

TYPE

<message-type-name> = message <message type>

<message structure>

fqueue-length: <positive-
integer>?

NOTES

1. <MESSAGE-TYPE-NAME> is the declared name of a certain

message (type and structure); it is usually declared

for a specific purpose (such as broadcasting new best

solution values in the eight-puzzle program).

74

2. <MESSAGE-TYPE> is one of: consumable, broadcast-

queue, or broadcast-supercede.

3. <MESSAGE-STRUCTURE> is the format of the message,

e.g., integer or record. If the message has no

content, this is indicated by using the words "NO-

CONTENT" for <message-structure>.

4. Optionally, the programmer may specify the maximum

number of messages which may be queued before a

process is blocked by trying to send a message. The

number of messages is specified in the <positive-

integer> portion of [queue-length: <positive-

integer>}.

Declarations required within a process are listed below.

VAR

<BIN-NAME>: <MESSAGE-TYPE-NAME> MESSAGE

NOTES

1. <MESSAGE-TYPE-NAME> is a message name declared in

the program body.

2. <BIN-NAME> is an instance of the specified <message-

type-name>. The <BIN-NAME> is a variable allocated

in the processes' space and is of the format

specified in the program as <message-type-name>. It

serves as the receiving and sending area for

messages. When a message is received, its value has

been placed in the variable <BIN-NAME>. To send a

75

message, <BIN-NAME> is first assigned a value (if it

has any content) and then the value sent. The <BIN-

NAME> variable can be treated as any other variable,

except if it has a no-content structure. It is an

error to try to read or write to a no-content

variable.

(5) Example: Multiple Producers, Multiple Con-

sumers with Buffer. To clarify this message system, the

multiple producer, multiple consumer problem will be solved.

Let the buffer be an array of size N numbered from 1 to N.

Producers desire to produce and place their product in the

ith slot of the array by executing produce(i). Consumers

similarly consume. The problem, of course, is to somehow

coordinate the producers and consumers so they don't

interfere with one another, and so there is no race

condition. The solution is shown below.

PROGRAM

TYPE
SLOT-TO-USE = MESSAGE CONSUMABLE

INTEGER: 1 .. N
F QUEUE-LENGTH: N

/PROCESS PRODUCE/
PRODUCE - PROCESS
VAR

FULL, EMPTY: SLOT-TO-USE /MESSAGE/
BEGIN

DO FOREVER
AWAIT-RECEIVE (EMPTY)
FULL <-- EMPTY
PRODUCE (FULL)
SEND (FULL)

END DO
END 7PROD-CE PROCESS/

76

/PROCESS CONSUME/
TYPE

CONSUME = PROCESS

VAR
FULL, EMPTY: SLOT-TO-USE

BEGIN

DO FOREVER
AWAIT-RECEIVE (FULL)
EMPTY <-- FULL
CONSUME (EMPTY)
SEND (EMPTY)

END DO
END /CONSUME PROCESS/

BEGIN /PROGRAM/
CREATE - PROCESS (PRODUCE)
CREATE - PROCESS (CONSUMER)

END /PROGRAM/

As written, this program won't work. Producers and consumers

send messages to each other which consist of the slot number

they just filled or emptied. Since these messages are

consumable, producers and consumers will always alternate

with respect to any given slot. The problem is that someone

has to get things started. Say the buffer is initially

empty. Then the producers need N messages telling them to

produce into slots 1 through N. Adding the following "dummy

consumer" procedure to the program code gets the processes

started and correctly completes this program.

PROCEDURE DUMMY-CONSUMER

BEGIN
FOR i <-- 1 to H DO

EMPTY <-- i
SEND (EMPTY)

END DO
END7DffWY - CONSUMER/

77

If the buffer were initially full, replacing the word EMPTY

by FULL in the procedure above would correctly start the

program.

It should be mentioned that the above

solution does not force the produced products to be consumed

in the order that they were produced. This illustrates that

messages do not naturally order events. This characteristic

of messages is sometimes helpful and sometimes harmful.

3. Advantages of Using Message Passing

In the multiple consumer-producer example no mutual

exclusion enforcement was necessary at the highest level

(that of the program). Mutual exclusion requirements, if

any, would be implemented at lower levels, probably within

the operating system. This hierarchical "push-down" of

mutual exclusion requirements is in keeping with the

philosophy discussed in the section on mutual exclusion.

There are other potential advantages for using message

passing, namely more flexibility for compatibility with the

underlying architecture, and more hierarchial structuring.

These are illustrated in the following example.

In the eight-puzzle problem, there may be a need to

occasionally promulgate to processes the value of a new best

solution. An approach which doesn't use message passing is

to use a shared variable which contains the value of the best

solution found. Periodically, a process could read the

78

variable's value and check if it agrees with what it thinks

is the best solution. This approach could be hierarchically

structured by using a read procedure (within a monitor-type

section of code) to access the shared variable. The read

procedure would ensure, at a lower level, that concurrency

requirements were met.

A message-passing approach to this problem would

consider the intended use of the information being sent. At

the highest level (processes doing expansion), the message

would be declared as a broadcast type in which newer messages

supercede old ones.

The lower level procedures for message sending and

receiving could interface with the operating system to take

advantage of this type of message. With a broadcast type

message, it is not necessary to have a shared variable. An

update of the best solution (sending a message) could send

new copies to remote sites. If a process gets an old message

value because an update is still in progress, no undesired

results occur. The ability to implement the message passing

at a lower level as sending copies is important for two

reasons. First, it allows elimination of the bottleneck of

needing one shared variable. Second, it allows the

flexibility to adapt to a different architecture such as a

distributed system. To implement the shared variable

approach at a lower level in a distributed system is

79

4 - - - - - - -

difficult because there is no shared memory. Furthermore,

the lower level procedures in a shared variable approach have

no knowledge of the nature of the use of the variable. By

structuring the problem with a message-sending solution, the

use of the message information is categorized (by declaring a

message type) so that lower level procedures can take

advantage of it.

The message passing approach also allows greater

hierarchical structuring. Once lower level procedures have

been written which implement message passing, the programmer

need not worry about designing data structures (except for

the message structures) as is necessary for shared variables.
For example, a shared data structure approach might require

designing a queue whereas a message approach already has an

implicit queue.

E. CONCURRENT VERSUS DISJOINT PROCESSES: MONDETERMINISM

Race has already been discussed as one potential

difference between disjoint processes and interacting

concurrent processes. It was shown in the V <-- V + 1

example how the effect on a shared variable can vary from run

to run. Assume that all race problems have been corrected.

Does that mean that for a given input, the output of a group

of concurrent processes will always be the same? This

section explores that question.

80

In a disjoint sequential program with a given input, the

set of statements executed, the time ordering of those

statements, the set of outputs and the time ordering of

output will always be the same. That is, the program is

deterministic. How does this differ from a program

consisting of concurrent processes? The differences vary

depending on the type of concurrent program. These

differences will be considered in order of increasing

disparity.

What is meant by input and output of a process? Define

input simply as anything the process has access to which can

be varied outside the process from run to run. Define output

simply as what the program affects outside its boundaries.

Note that the specification of the boundaries of a process

are somewhat arbitrary. Now, consider a single process which

is part of a group of concurrent processes. For a given

input, its behavior will be deterministic--the statements

executed and their time ordering as well as the output and

its time ordering will always be the same (again, this is

assuming no race problems exist).

1. Precedes Relation Example

Now consider a program consisting of several

concurrent processes. Let the program be a precedes-relation

type program as defined earlier, with output only at the end

of the program. For a given input, the time ordering of

81

4 -- 4 - .- -

statements varies nondeterministically between "check-

points". The statements are interleaved in an arbitrary,

unknown fashion. However, the output is always the same.

Moreover, communications or "meeting points" of the processes

always occur deterministically with respect to the set

statements already executed.

2. Mutual Exclusion Example

For the next example, two processes asynchronously

access a shared resource. For whatever bizarre reason, one

process repeatedly prints out a line of question marks and

the other prints out a line of ones. The printer is the

shared resourcei each process gains control of the printer by

a request-printer call (which effectively starts a critical

region), prints out a line, and releases the printer by a K
release-printer call (which ends the critical region).

Again, the time ordering of statements of the program (which

consists of both processes) varies. But, in this case, the

time ordering of the output also varies nondeterministically.

If one watches the printer, the lines of ones and question

marks will be interleaved in arbitrary fashion. Note that

this potential variance of output from program run to run

does not imply that the program is "wrong'. It depends on

the intent/purpose of the program. However, the variance of

output :einforces an important pcint. Trying to troubleshoot

or test a concurrent program can be almost impossible because

82

of the difficulty of trying to infer the program's behavior

from a nondeterministic output.

3. Optimal Eight-Puzzle Example

In the previous example, the content of the output

was deterministic, although the time ordering was non-

deterministic. Consider a concurrent program which solves

the eight-puzzle problem. It consists of some fixed number

of processes, each of which is working on expanding a subtree

of the problem. When a process finds a solution, it updates

a shared data structure containing the value of the best

solution found so far. The heuristic function which

evaluates the potential of a node to be on a solution path

ensures that the optimal solution is found (assume for

implicitly that there is only one optimal solution).

Periodically, processes check the value of the best solution

found and throw away any leaf nodeswhich don't have as much

potential.

Certainly, the time ordering of statements of the

whole program is non-deterministic. Furthermore, what a

process does from run to run may vary. Because a process

periodically discards nodes, it may expand nodes in one

program run which in another program run it discards because

another process, running "faster", found a better solution

sooner. However, because the solution method is optimal, the

output of the program will always be the same.

83

4. Non-Optimal Eight-Puzzle Example

Consider the preceding program "complicated" by

making the heuristic function such that an optimal solution

is not guaranteed. (i.e., nodes which are on an optimal

solution path may be thrown away based on a non-optimal

solution already found). The program is further complicated

by allowing a process to spawn other processes if it thinks

it has a group of nodes with outstanding potential. This

program is drastically different from a single sequential

program. Of course, the time-ordering of statements within

the program is nondeterministic. So is the time ordering of

statements within a process. Moreover, the group of

processes which execute is nondeterministic because dynamic

process creation is allowed. But, the most dramatic

difference of this program is that the program output is non-

deterministic. Because the program is non-optimal, a process

which in one program run found an optimal solution may in

another program run throw the solution away because another

process found a solution sooner that appeared better.

Here is a program which is correct (it does what's

intended) which may give different, but correct answers from

run to run depending on factors such as the number of

processors, the loads on the processors, etc. This situation

is contrary to the fundamental notions of computer science.

Programs are supposed to g've the same output for a given

84

input. If they don't, something's wrong (such as a race

condition). There are many reasons against writing programs

such as this. What such programs do is difficult to

conceptualize, hence the programs would be difficult to

write, troubleshoot, and test. To depend on such a program

would be dangerous--it might be impossible to know if the

program were correct. (One might never want to put such a

nondeterministic program onboard a space vehicle, for

example).

But, there are also arguments for such programs.

They might prove to be fundamentally more powerful in some

respects. As an analogy, the tools of recursion and pointers

are also difficult to understand, but they are very powerful

(some would argue that recursion and pointers should not be

used). The notion of a program with a nondeterministic

output may closely mirror life. For example: a group of

people are trying to decide an approach to take for a

problem. During the discussion, Mary makes a suggestion

which everyone thinks is good. Other paths which were being

explored are thrown away. Eventually a solution is agreed

upon. This solution reflects Mary's input. Now, assume the

problem can be re-run; identical people are put together to

discuss the problem, only this time, Mary has a headiche.

The discussion proceeds the same as before until the point at

which Mary previously made her suggestion. She makes no

85

suggestion this time because of her headache. The final

result is a different solution, although it is a valid one.

As another example, a robot is built which consists

of many different processes, each running on separate

processors. The robot has a process which estimates the size

of openings to determine if it can go through them.. If the

sizing processor were slowed down by a weak battery, the

robot might react differently to openings. Thus, the

"output" of the robot for a given "input" may vary from run

to run. An argument for using separate processors for a

robot is reliability--if one processor fails, the robot can

still partially function. This example of a robot is like a

human being who may react differerntly to situations because

of physical injuries or disease.

There are many problems which are so hard that

optimal solutions probably do not exist. For those problems,

the notion of doing the best one can, with resources

available at the time, (such as number of processors) may be

a valid approach. A non-deterministic program consisting of

interacting processes may be a powerful, reasonable way to

approach such problems.

5. Nondeterminism Recap

To recap, a single, disjoint process for a given

input is deterministic in the set of statements it executes,

the time ordering of those statements, the set of output and

86

the time ordering of the output. A program of concurrent

processes may be nondeterministic in some or all those

categories and still be a "correct" program (i.e., the

program does what is intended).

F. CHAPTER SUMMARY

An underlying theme of Chapter 3 has been the fundamental

importance of structuring concurrent problems. It is

important to distinguish between approaches to structuring

and tools for implementing these approaches. To an extent,

the tools available shape the approaches, but separation of

the high level approach from the tools makes for a clearer

solution to a problem. The tools and approache discussed in

Chapter 3 are synopsized in the following paragraphs.

Although it is important for understanding concurrency,

mutual exclusion should not be used as a high-level approach

to a problem. If it is needed, mutual exclusion should be

relegated to a lower heirarchical level, preferably by

incorporation into abstract data types.

The precedes relation provides a good example of a high-

level structuring approach and is applicable to certain

problems. It illustrates the advantage of externally

coordinating a group of processes: by placing the code for

concurrent control of the processes textually in one place,

the program is easier to understand and maintan.

87

-- - -~-&_

Often, the need for mutual exclusion can be avoided by

ordering processes with respect to shared resources. A

synchronization approach does this. It can be implemented

using tools such as eventcounts and sequencers.

A high-level tool which can be used to structure some

concurrent problems is message passng. The use of message

passing can often eliminate the need for mutual exclusion by

providing communications without shared variables.

Concurrent approaches to problems should provide a

large increase in the power of the computer. Unorthodox

practices such as programs with non-deterministic outputs may

help realize that increase in power. Another consideration

is the hardware upon which the software runs. Since the

power of concurrency is realized by multiple processors,

questions such as how well an architecture allows processes

to communicate must be considered. Hardware considerations

are addressed in the next chapter.

88

IV. DEVELOPING A CONCURRENT TREE SEARCH PROGRAM

With the concurrent programming issues of the last

chapter in mind, this chapter discusses some of the

considerations and approaches for writing a concurrent tree

search program such as the eight puzzle. First, it is argued

that it is necessary to consider the underlying architecture

in writing the program. Next addressed is the fundamental

question of whether the tree should be a shared data

structure. Then, memory management problems are considered.

The final three sections discuss approaches and problems in

starting, doing, and finishing the tree search.

A. THE NEED TO CONSIDER THE UNDERLYING ARCHITECTURE

In considering the usefulness of concurrent programming

techniques, it is helpful to review the context in which the

techniques were developed. The initial problem was that of

an operating system in which different programs had to use a

single processor. Moreover, some of these programs competed

for shared resources, such as a printer. A conceptual

breakthrough in multiprocessing was the development of the

notions of process and virtual processor. Each process,

conceptually, ran on its own processor. This presented the

problem of asynchronous processes accessing shared resources.

89

The initial tools of concurrent programming were developed to

solve this problem.

These initial concurrent programming tools were based on

systems in which there were one, maybe two, processors and

there was one shared memory (even considering t1: notion of

virtual memory, the correct picture was that of a shared

memory). Thus, mutual exclusion ensured exclusive access to

a shared data structure; a monitor consisted of a group of

procedures located in a shared location, and which accessed

shared data structures; eventcounts and sequencers

synchronized processes with respect to shared data structures

and eventcounts were shared variables accessible with certain

operators. These approaches work well in a system in which

only one or two processors access the shared memory, and in

which processes are loosely coupled.

Consider now high level programs which are written to be

concurrent, and which include, for instance, five or more

cooperating processes. The value of such a program is the

potential speed increase to be gained by doing a problem in

parallel. This value is realized only by running the

processes on separate, physical processors. But, if the

program is written using tools which assume *easy" access to

a shared memory, problems arise. For most architectures,

access to shared memory is done by a common bus. If the

processes are frequently accessing shared memory, a

90

bottleneck occurs at the bus. Furthermore, this memory bus

bottleneck may be coupled with a mutual exclusion bottleneck

of shared data structures, making the problem worse. The

effect of such bottlenecks is to slow down the program, i.e.,

to degrade the potential speed increase of concurrency.

Such problems imply that concurrency techniques based

solely on easily accessible shared memory are insufficient

for writing high-level concurrent programs. The problems

also imply that somehow the concurrent tools should consider

the underlying architecture. What is needed is a high-level

view which is conducive to writing concurrent programs which

run efficienly on the underlying architecture.

If concurrent programming tools are going to support an

architecture, what architecture should they support? Perhaps

the ideal approach is to develop good concurrency writing

tools and then to develop hardware which best supports these

tools. Some suggest that a major problem with most

programming languages is that they were based on an

underlying Von Neumann computer architecture [for example

Back78].

One proposed language design for concurrency is based on

the notion of data driven statement execution. A program

would consist of a set of unordered statements, each of which

is executed as soon as its operands are ready. Such a

language, called a data flow language, has a high potential

91

for concurrency. However, the architecture needed to support

data flow languages is still being designed.

While concurrency tools which require new architectures

are being developed, some tools are currently needed which

make use of existing hard-ware. In order to discuss high-

level concurrency approaches which facilitate efficient use

of underlying architecture, a realistic hardware

configuration will be assumed. This architecture consists of

a number of processors which each have their own local

memory, and which are all connected to a shared memory by a

common bus. Figure 7 shows such a configuration. It is a

typical architecture for multiprocessing systems and, thus,

will be an appropriate vehicle for discussing concurrent

approaches to the eight-puzzle problem. It should be noted

that the conclusions developed are not necessarily limited to

this architecture. In general, the discussion is relevant to

any architecture in which processor communication is limited.

With the architecture of Figure 7 in mind, some issues in

the design of a concurrent eight-puzzle program will be

discussed. These issues involve fundamental considerations

of concurrent programming, especially tree search, on a

conventional architecture. The discussion assumes the

availability of dynamic process creation, i.e., processes can

create other p~ocesses at run time.

92

i n -- .- m -mm | - ,

0TC ALf

MMORY CPU

.O4RY CPU
- '

I O CAL PU S

T

,,IMORY I ?T

G' M RY

:..I =M IR, -I ?

Figure 7. Typical Multiprocessor System

93

B. DIVISION OF TREE SEARCH AMONG PROCESSES

The first question to be addressed in a concurrent tree

search is whether or not the tree should be a shared data

structure.

1. Shared Frontier Approach

Perhaps the simplest approach is to place the tree in

shared memory. Each processor would have a search process

which retrieved a node from the frontier of the tree,

expanded it, checked for a goal, and placed the children in

the frontier. The problem with this approach is one of

bottleneck. Processes compete for the common bus to access

shared memory. With more elaborate hardware, simultaneous

bus and memory accesses might be possible. This could reduce

the hardware bo zIeneck, but there is still a mutual

exclusion bottleneck with respect to the data structure. The

data structure bottleneck could be reduced by allowing

simultaneous operations on the frontier as discussed in the

last chapter. At best, there is still a significant

bottleneck for a shared tree structure. Avoidance of

bottlenecks should be a fundamental consideration in

concurrent programs.

2. Division of Tree Approach

To avoid a bottleneck, then, it makes sense to divide

the tree among processes, letting each process search a

subtree. An extreme of this approach is to let each process

94

represent a single node. A process would expand a node and

create a child process for each of the children nodes. The

program would be started by expanding the root node far

enough to place a process (representing a frontier node) on

each processor. On each processor, as processes expand, a

subtree is being explored. To control the subtree

exploration, each frontier node process would have a priority

based on the heuristic value of its node. In effect, the

operating system of each processor would control the

heuristic search of a subtree by controlling the order in

which the frontier-node processes ran. One problem with this

approach is the amount of overhead required for the numerous

process creations. If process management were implemented at

a hardware rather than software level, this approach might be

efficient.

An approach between the two extremes of a shared tree

and a single-node)rocess is to have each process explore a

subtree. As before, the root node is expanded until the

frontier is large enough to divide among the processors. On

each processor, then, a process explores a separate subtree.

How good is this approach heuristically? If a

process is passed a node to expand which has very little

heuristic value, that process and its processor will be of

little help to the overall problem. To ensure that each

process gets nodes with enough potential, perhaps each

95

AD-AW2 64? DEVELOPMENT OF A CONCUSRENT INEE SEARCH PRM('lAMUl /;
NAVAL POSTGRADUATE SCHOOL MONIEREY CA C N POWILEY
OCT 62

UNCLASSIFIE 11/PO 9/2 NL

MIIim m/~hh

II two- 2.0

1.8

11111_.25 111 .4 111.

MICRO COP RESOLUTION TEST CHART
A*' S%A, SerA

process should be initially passed a number of nodes, rather

than just one. Furthermore, it might be desirable to

periodically recombine each process' frontier. This

recombination, or collation, would be time-consuming, but

might be worth the improvement realized by ensuring a uniform

heuristic distribution of nodes. Questions such as how often

to collate and how large a frontier to initially pass a

process are difficult. They warrant extensive mathematical

analysis coupled with empirical testing.

C. MEMORY MANAGEMENT PROBLEMS

Typically, in a tree search problem, a node is a record

which includes a pointer (or some other reference) to its

parent. This is necessary so that when a goal node is found,

the path from it back up to the root node can be followed to

construct the solution. (An alternative to using pointer in

nodes is for each node to remember its ancestry--this

approach won't be considered).

Consider a problem approach which allows dynamic process

creation--a process may expand a frontier, then break it up

and pass it to another process. But in doing this, a process

can place in its memory space a node record which points to

another process' memory space. Should that situation be

allowed? If it is, the implication is that a process can

retrieve a record from another process' memory space by

following a pointer. This would require the local operating

96

system associated with a processor to access another

processor's memory space, a potential bottleneck.

Furthermore, mutual exclusion is required so that a process

cannot change a node while it is being read by the operating

system.

A method for allowing inter-process memory pointers is

discussed in the next chapter. It is based on message

sending between processes to pass the value of a node. The

programmer is presented with the high-level view that each

process has its own memory space, or bucket, which is

accessible only to it. Although perhaps not the most elegant

solution, it requires little operating system support and

presents a view to the programmer which correctly suggests

that the operation is time-consuming.

Another consideration in moving records with pointers is

dangling references. To avoid jumping among

process/processor memory spaces to print out a solution (path

from root to goal), it might be desirable to move all

subtrees to the global memory space. This involves moving

interior nodes. Interior nodes are pointed to by their

children. Thus, when an interior node is moved, the pointer

of the child node is left dangling. Either the child pointer

must be changed or a reference to the old address must be

converted somehow to the new address. One possibility is to

record changed addresses in a hash table; everytime a pointer

97

* -r |- ~ -

reference is followed, the hash table would be checked first

to see if there were a substitute address. Clearly, allowing

movement of interior nodes requires a significant amount of

overhead. The benefits of collation may be great enough to

warrant either movement of interior nodes, or changing the

problem approach so pointers aren't required.

These problems show that memory management is a

fundamental concern of concurrent programming. Often the

tradeoff is between passing an enormous amount to a process

so that no external references are needed, or requiring

complex memory management capabilities of the operating

system.

D. STARTING THE SEARCH

The desired configuration of the program when the search

is in progress is that there will be one or more processes

per processor, each process exploring some part of the tree.

How is this configuration achieved? One approach is to have

a controlling process, the director, which creates processes

and passes them a subset of the frontier to expand. The

director would start by expanding the root node for some time

and then divide the frontier and pass sections of it to

created processes.

Another approach is to let each process have the ability

to create other processes. An initial process would expand

98

in an amoeba-like splitting fashion until all the processors

were full. This would create a tree structure of processes

with parent-child relations among the processes.

So, two "start-up" approaches have been suggested. One

involves a director overseeing a single level structure of

processes, whereas the other approach involves a tree

structure of processes. The tree structure might also have a

director process which created the first search process. An

advantage of the single level process structure is that it is

simple. A disadvantage of the single level is that there is

a potential bottleneck at the director process. For example,

the single level director must sequentially create search

processes, whereas processes can be created concurrently in

an amoeba splitting manner in the other approach. A more

difficult consideration is which of the two methods of start-

up is better for ensuring an initial uniform heuristic

distribution of the frontier. This consideration will not be

analyzed in this thesis.

For either method of program start-up, there needs to be

a way to stop process creation when all processors have been

used. One approach is to know before program execution time

the number of processors, and to program this as a constant

into the program. Thus, a director process would know there

were, say, seven processors, and each processor would have a

process initially loaded on it. Sugi8l, for example, solves

99

V ---_-

the problem this way. This approach is considered too

inflexible and too closely coupled to the hardware

configuration.

What is needed is an interface with the operating system

which either indicates the total number of processors

available, or indicates if any processor is available. To

prevent a race condition, the indication of an available

processor must be coupled with allocation of the processor.

For this reason, the approach suggested is a mechanism for

indicating if a single processor is available. An elegant

vehicle for implementing an operating system interface of

processor availability is message-passing. A process could

be allocated a processor by receiving a consumable message.

Making the message consumable assures that the processor is

allocated just once. Depending on the process' need for the

processor, the message receipt operator used could be either

a blocking or an existence type receipt operator.

For this suggested processor availability mechanism, the

operating system must (conceptually at least) send a message

for each available processor. When a message is received, the

operating system would expect the receiving process to create

a child process. The operating system would then allocate

the processor to the created process. Furthermore, prior to

allocating a processor for a reason other than message

receipt, the operating system would have to "retract* one of

100

its availability messages (conceptually, the operating system

would receive a message itself). One further advantage of

processor allocation by messages is that it allows dynamic

changes in the number of processors.

E. WHILE THE SEARCH IS IN PROGRESS

Once the program has been started and processes are

distributed among processors, the most important and time-

consuming phase of the program takes place; the search for an

optimal solution. The key considerations of this concurrent

tree search will now be discussed.

1. Promulgating the Value of Best Solutions

In a heuristic search, after a solution is found, the

search will continue as long as there are frontier nodes with

ajre heuristic potential than the value of the solution

already found. The search stops when there are no nodes left

with more potential than the best solution found. It is

apparent that expansion of nodes which have a lower potential

than a solution already found is non-productive. To preclude

such wasteful expansion in a concurrent tree search, it is

necessary to somehow promulgate the value of each new best

solution to other processes.

One way of keeping track of the overall best solution

found is to use a shared variable. Periodically, processes

check the value of the variable to see if it has changed.

When a process finds a new solution, it would update the

101

* -i-|

variable to reflect this (after, of course, comparing the

variable's value to the value of the solution the process had

just found). The disadvantage of the shared variable

approach is that it presents a potential bottleneck.

Another approach for keeping track of the best

solution found is to use meqsage passing. The nature of a

superceding broadcast message is well suited for this

application. When a process finds a solution, it promulgates

the value (cost) of the solution by sending a broadcast-

supercede message. Similarly, each process periodically

checks if a new best solution message exists.

On first glance, the message passing approach just

suggested for promulgating solution values appears to work

well. However, it has a flaw which should be understood, as

it illustrates a crucial type of message-passing error. The

reason for using a superceding type broadcast message to

promulgate a new best solution is that only the value of the

best solution is important. It is possible, however, for a

message to be superceded by a message representing a solution

of lesser value.

Consider the following example. Process A finds a

new solution which has a higher value than the value of the

last best solution message process A received. Process A

checks for a more recent message, finds none, and sends a

broadcast-supercede message to promulgate the value of the

102

solution it just found. About the same time process A finds

a solution, process B also found a solution. Process B's

solution is also better than the last solution messaged

process B received. However, process B's solution is not as

good as process A's solution. Processes A and B both check

for a new solution message at about the same time, and thus

are unaware of each other's solution. Process B sends its

best solution message just after process A sends its best

solution message.

Because the message is a superceding broadcast type,

the operating system promulgates only the most recent one.

Thus process B's message is kept and process A's message

thrown away. Unfortunately, process A had found the better

solution. The effect is that other processes will receive a

new best solution message which does not reflect the best

solution; they may waste their time expanding nodes with more

potential than process B's solution, but which are not as

good as process A's solution.

The race situation just described is due to the

nature of message passing. There are delays of unknown

duration between the time a situation occurs, the time a

message is sent to reflect the situation, and the time the

message is available for receipt by other processes. Even if

these delays did not exist, two messages could be sent

simultaneously; if the messages are of the same superceding-

103

broadcast type, the operating system must order them and

discard one of the messages. In general, when writing

programs using message passing, one should never assume that

because a certain message does not exist that such a message

has not been sent; it may be that such a message is about to

be sent, or has already been sent but is not yet ready for

receipt.

How can the problem with using a broadcast-supercede

message to promulgate the value of a new solution be solved?

The nature of the broadcast-supercede message type is such

that it is well suited for promulgation by a single process

rather than by a group of processes. With this in mind, one

approach is to use one process (call it the best solution

process) as a central point of contact for the best solution.

Each process, upon finding a new solution, sends a consumable

message to the best solution process. The best solution

process keeps track of the best solution received and sends

superceding-broadcast messages to all other processes.

Although this may seem like a time-consuming operation, it is

less of a bottleneck than the shared variable approach

because of the nature of the messages. A process never has

to wait to check the value of a shared variable; it only

checks to see if there is a new best solution message. Note

that in the message passing solution, delays may still occur

in promulgating a new solution due to the time it takes to

104

pass a message, but solution values will never be lost.

Also, in both the shared variable and message passing

approaches, the processes are delayed in receiving a new

solution value by the intervals between checks for a new

solution. How often a process should check for a new

solution value is a tradeoff between the time required for

excessive checks and the potential wasted time spent

searching for a solution using nodes with less potential than

a solution already found.

Another approach to avoiding the race problem which

occurs if different processes use broadcast-supercede

messages is to use broadcast-queueing messages instead. This

approach requires that a process check for multiple best

solution messages. It has the advantage that best solution

messages go straight to search processes without passing

through an intermediate best-solution process.

2. Ensuring Uniform Heuristic Distribution

Promulgating new best solutions is one way of

improving the efficiency of a heuristic concurrent search. A

consideration of probably even more importance is ensuring

that the heuristic search is uniformly distributed among

processes. Conceptually, at any given instant of the search,

there is one global frontier associated with expanding

(searching) the tree whose root node is the start node of the

problem. This frontier is spread out among the search

105

• . lump-

processes so that each such process has its own "sub-

frontier" (subset of the global frontier). Ideally, the

nodes of the global frontier should be spread out among the

search processes so that each process has a set of nodes

which are of about the same heuristic worth. If the global

frontier is not uniformly distributed, then some processes

may be expanding nodes of little heuristic value while other

processes have so many "good" nodes that they need help in

expanding them. Even if the global frontier is initially

distributed in a uniform fashion (accomplishing that is a

problem in itself), after a time the distribution may still

become lopsided. The problem is how to detect a lopsided

heuristic distribution and, once detected, how to remedy it.

a. Using Priorities

One approach to this problem is to use the

operating system to aid in the distribution of processes and

in the selection of which processes to run (assuming there

are more processes than processors). Most operating systems

use the notion of priority in selecting processes to run.

Processes with a higher priority are allocated more time on a

processor than those with a lower priority. The relative

time allocations are based on the policies of the operating

system. For the assumed architecture, it is reasonable to

assume that each processor has an operating system which

allocates processes by priority. It is reasonable to further

106

assume that when a process is created, its priority will be

considered in determining which processor to place it on.

Thus, if all processors have several processes on them and a

process with a high priority is created, the new process will

be placed on a processor having low priority processes rather

than on a processor with high priority processes. Such

placement of created processes helps in evenly distributing

processes by priority. It should be noted that there may not

be much of a common bus bottleneck as a result of creating a

process on a different processor than the one on which the

process creation request was made. Each processor/operating

system should have a copy of the search process so that only

the create-process request and the initial process parameters

need to be passed along the common bus. In addition to

distributing newly created processes, it might be useful if

the operating system also redistributed running processes

among processors. Whether process distribution is done any

time or only during process creation, suc..h actions require

communication between local operating systems and introduce

complexity and overhead (e.g., bus bottleneck) into the

operating system.

If the operating system is to be used as a means

of uniformly distributing processes among processors based on

the priority of the process, there must be a mechanism for a

process to communicate its priority to the operating system.

107

As suggested in discussing how a process can ascertain the

availability of a processor, a good way to interface with the

operating system is by message. To communicate its priority

to the operating system, a process could send a message

containing its priority. The priority of a process would be

based on the heuristic worth of its sub-frontier, relative to

the sub-frontiers of other processes. Note that a given

process may have to change its priority numerous times during

its search, and that therefore the operating system must

accept dynamic priority changes.

Using an operating system to uniformly distribute

search processes does little good if, say, all the good

frontier nodes are in one process and the rest of the

processes have poor frontier nodes. (When the terms "good"

or "bad" are used to refer to a node, they refer to the

heuristic value of the node). The operating system technique

1merely allocates processes uniformly when there are more
processes than processors. Call a process with a

disproportionate number of good frontier nodes a "hot"

process. What is needed is a way to distribute some of the

nodes of a hot process. Two ways a process can distribute

some of its frontier nodes are by passing nodes to other

existing search processes or by creating new search processes

and passing nodes to them.

108

b. Distributing Frontier Nodes by Process Creation

If a hot process tries to distribute some of its

frontier nodes by creating other processes, then it issues

some type of create-process call to the operating system.

Previously it was discussed how the entire program can be

started by processes expanding in amoeba-splitting fash.an

until all processors were full. A process checked to see if

a processor were available by checking the existence of an

operating system message. Presumably, a create-process call

made when all processors have running processes will create a

process on a virtual processor. Actually, the process will

be time-shared with other processes. The problem with

creating a child process to help the parent process is that

the child process may be placed on the same processor as the

parent process. If that happens, there is no real gain in

the concurrent search of the parent process' initial frontier

nodes. By using a priority-driven approach, this problem is

alleviated since the operating system will place a high-

priority newly created process on a different processor than

the high-priority parent of that process.

c. Distributing Nodes by Passing

The other approach for a hot process to

distribute its frontier is for it to pass some of its nodes

to an existing process. To do this requires some means of

identifying a process to receive the nodes. This receiving

109

• i m • m ..-I

process should be one which has a poor group of frontier

nodes. Furthermore, once a receiving process is designated,

some method is needed to do the transfer. One way is for

each process to periodically check for the existence of

transfer messages. The hot process could then send part of

its frontier to a designated process and be guaranteed that

eventually the receiving process would receive the message.

However, "eventually" may be too long an interim for these

"hot" frontier nodes to be unattended (in an unreceived

message). One can think of more elaborate message passing

schemes, such as one which "locks" the receiving process in a

state of communication prior to sending so that reception

occurs soon after sending. If relying on priorities to

distribute processes, another potential problem is that a low

priority process might never get a chance to receive a

message because the operating system might not let it run due

to its low priority. This problem indicates the danger of

trying to rely on the operating system for some goal while at

the same time attempting to achieve the goal at a higher

level.

Two approaches for a hot process to distribite

some of its frontier nodes have been discussed. One method

was by creating new processes and the other method was by

passing nodes to an existing process. Both approaches have

problems. The danger in creating a process is that the child

110

process may stay on the same processor as the parent.

Coupling the create process approach with a priority driven

approach avoids this problem. The other method of

distributing nodes by passing to an existing process has the

disadvantage that it requires some sort of communication

hookup. This approach should not be used with priorities.

d. Detecting Hot Processes

A fundamental issue for both of the above

approaches is how a process is initially determined to be

"hot". That is, how does a process know that its frontier

set has significantly better heuristic value than the

frontier sets of' other processes? For a process which

intends to pass some nodes to another existing process, a

similar question is how the receiving process is designated.

The first thing necessary to determine if a

process is hot is some measure of the worth of a process'

frontier set. Such a measure will not be developed.

Given that each process has a procedure for

calculating the heuristic worth of its frontier, some means

of comparison among processes is needed. A process should

not divide its frontier unless it knows that the frontier is

better than that of other processes. One means for comparison

is to have a global data structure containing the worth of

processes. The data structure could contain an average of the

111

heuristic worth of all processes, or a table indicating the

value of each process.

A global data structure presents a bottleneck.

Another approach is to have a separate process, the heuristic

director, in charge of evaluating the relative heuristic

worths of the search processes. The heuristic director would

keep track of the heuristic worth of each search process.

Whenever a search process had a significant change in the

heuristic value of its frontier (either an improvement or a

degradation), it would send a message of its new value to the

heuristic director. When the heuristic director detected a

significant heuristic imbalance in the search processes, it

would send a message to the hot processes directing them to

break up their frontiers. If the method of breaking up a

frontier by sending nodes to an existing process were used

(vice creating a new process), the heuristic director would

also determine the receiving process.

If a heuristic director method is used with the

approach of breaking up a hot frontier by creating new

processes (vice passing to existing prc-2esses), an important

but subtle problem occurs. Breaking up frontiers by creating

new processes implies that there will be more processes than

processors, i.e., that each processor will have several

processes. Say, for an example, that there are ten

processors with twenty processes distributed among them. Let

112

-Mon"-- -

ten of the processes have good frontiers of about equal

value, whereas the other ten processes all have much poorer

frontiers. The processes are distributed so that each

processor has one "good" and one "bad" process running on it.

If the heuristic director assumes that each process is

running on its own processor, then it will conclude that the

processors with the bad processes are wasting their time

relative to the processors with the good processes;

accordingly, it will direct the ten good processes to split

up. Such an action has the wrong effect. If a priority-

driven approach was also being used, then the program was

already running optimally; each processor had an equally good

process which it was running most of the time because of its

high priority. Dividing up each of the good processes does

not cause any increase in the amount of processor time spent

on the heuristically good processes. If a priority-driven

approach was not being used, and the heuristic director

directed the hot processes to split up, then some improvement

does result. Without a priority approach, each processor was

initially dividing its time equally between a good and a bad

process. After the split, each processor spends 2/3 of its

time with good processes and only 1/3 of its time with bad

processes. This improvement is more by accident than by

design. A more effective approach would have been for the

heuristic director to send a message to each of the ten poor

113

processes telling them to go to sleep (wait for the next

message). This would have ensured only the ten good processes

were left running.

The fundamental problem in the example above is

that the heuristic director did not have any notion of how

many processors there were. If the example were continued,

the heuristic director would keep dividing up the good

processes as long as they were better than the poor

processes. What is needed is for the heur tstic director to

have a view of how many processors there are. This implies

that, in addition to processor availability messages that

might be needed for startup, it might be useful to have an

operating system primitive which indicates the number of

processors. It might further be useful to be able to

determine which processor each process was residing on; this

*capability could become confusing if the operating system

were dynamically shifting processes around based on priority.

e. Uniform Heuristic Distribution Summary

It has been discussed that a fundamental concern

of a concurrent tree search is ensuring a uniform

distribution of the (conceptual) global frontier among

processes, and ultimately among processors. Two basic

mechanisms for distributing a process' frontier have been

suggested; passing the nodes to an existing process or

creating a new process and passing nodes to it.

114

.

Both approaches require some means of determining

when it is useful for a process to distribute some of its

frontier nodes. It may be that it would be effective for a

process to distribute whenever the value of its frontier

increased by a preset amount. More likely, it would be

necessary to compare frontiers of different processes since

heuristic worth is of relative importance. Whether relative

comparisons are more productive than internal comparisons is

a matter for empirical and mathematical measures. Because of

their nature, relative comparisons are probably best done by

using a heuristic director process as a central point of

contact.

The approach of creating a new process for

distributing nodes (vice using an existing process) implies

that there will be more processes than processors. This

further implies that, if used, a heuristic director needs

some notion of the number of processors so that new processes

won't be created needlessly. Distributing processes by

priority can also be coupled with the approach of

distributing nodes by process creating.

When the number of processes can exceed the

number of processors by an arbitrary and changing number, it

gets very confusing trying to ensure that the global frontier

is distributed so that it is being worked on uniformly by

real processors. The approach of distributing frontier nodes

115

- .log o - -•

to existing processes has the advantage of being conceptually

simple with respect to distributing processes on real

processors. Each process can be considered as running n its

own processor and this is a sufficient view to acnieve

uniform global frontier distribution. A heuristic director

can identify processes to distribute nodes as well as

processes to receive the nodes. The difficulty comes in

coordinating an effective transfer. Another advantage of

passing nodes to an existing process is that no operating

system interface is needed, whereas the process creation

approach required as many as two interfaces (one for priority

and one for number of processors).

3. Perhaps a Limited Global Frontier

Before proceeding, it is instructive to recall the

underlying motivation for breaking the frontier up among

different processes rather than having one global frontier.

The reasoning was that a global frontier presented too much

of a bottleneck. The primary advantage of using a global

frontier is that it keeps all the frontier nodes uniformly

distributed. Dividing the frontier among processes and then

attempting to ensure uniform distribution has been shown to

be a difficult undertaking. It may be that dividing the

frontier among processes is so expensive that a global

frontier is better. Before claiming that either one of these

116

- - ------ 4 |

extreme approaches is best, one should consider trying an

"in-between" approach.

The frontier of a tree search grows very large.

However, the nodes of interest are only those with relatively

high heuristic value; these nodes are a small percentage of

the entire number of nodes. Much of the bottleneck in using

a global frontier is the time it takes to re-insert newly

expanded frontier nodes. Rather than re-insert all frontier

nodes, it would be more efficient to re-insert just the best,

say, ten percent of the nodes. Using this approach,

processes could have their own sub-frontiers, but

occasionally "re-mix" their best nodes to ensure uniform

heuristic distribution among the processes. The global

frontier in this case would not be a truly global frontier,

but rather a limited global frontier which served as a mixing

pot for the best nodes of each process.

4. Memory Overflow

When a program running on a single processor runs out

of memory, that stops the program. But in a concurrent

program running on different processors, when the processes

on a single proceasor run out of memory, there are still

other processors left as well as perhaps shared memory left.

Because a tree search consumes so much memory, and because

the processors are running different processes and are

potentially running at different speeds, there is a good

117

-- ..

chance a processor will use all its memory before the program

is finished. Some approaches for dealing with this problem

are now discussed.

It may be that the operating system handles such

situations automatically by transferring processes to other

processors. This may not work because the processes take up

so much space. Rather than switch a process to another

processor, the operating system might place it in shared

memory. This, however, may cause a bus bottleneck as the

process must execute across the bus. A better operating

system approach might be to transfer some of the process'

variable space (such as nodes created) to shared memory and

keep the process' execution code. This will still cause some

bottleneck for across-the-bus memory references, but the

bottleneck will be reduced. Operating system approaches to

memory overflow have the disadvantage of requiring

sophisticated memory management to handle pointer references.

Perhaps a better approach is to explicitly handle

memory overflow at the program level. A process requests

space from its processor each time it creates nodes. This

request for space may be of a form similar to the "new"

command of the language Pascal. It is reasonable to require

the operating system to return some error condition when a

request for space cannot be satisfied. When a process

118

receives such an error code it could coordinate with the

director process to send its frontier nodes elsewhere.

Memory overflow should be a consideration in any

concurrent program which consumes a lot of memory. If a

program is stopped because of lack of space on one processor,

unused space elsewhere is wasted. By ensuring a contingency

plan for memory overflow exists, then, a program is made

more powerful by maximizing overall use of space.

F. FINISHING THE SEARCH

1. Recognizing that the Search is Completed

When each process has no frontier nodes with a better

heuristic value than the best solution found, then the tree

search is completed. How does the program recognize that the

search is completed? A simple and elegant way is for each

process to send a completion message to its parent. The

completion message indicates that both the process sending

the message as well as all of its children processes are

done. This approach works for a program which was started by

generating a tree-like structure of processes as well as for

the simpler case of a single level of processes. When each

process finishes, it waits for a completion message from each

of its children, if any, then it sends a completion message

to its parent. When the director process receives completion

messages from all its children, the search is complete.

119

4 - -- - - -'-- -- t . .

2. Identifying the Best Solution

Once the search is complete, it is necessary to

identify the best solution. An incorrect attempt at

identifying the best solution will be considered first to

illustrate an important type of message passing error.

Assume that, as discussed in the section on promulgating best

solutions, the program uses a best solution process for

keeping track of the best solution found. When the heuristic

director has indication that all processes have finished

searching, it asks the best solution process for the best

solution (name of the process having a goal node that is part

of the best solution). It might seem that the best-solution

process would definitely have the best solution. Prior to

sending its completion message, any process with a best

solution has sent a solution message to the best-solution

process. Since the director process has received all

completion messages, it seems reasonable that the best

solution process has received all best-solution messages.

This supposition is wrong. One cannot make any assumptions

about the relative speeds of transmission of different

messages. It may be that the best-solution message from the

process with the overall best solution had not reached the

best-solution process when the heuristic director asked for

the final best solution. (Note that this problem could nct

120

occur if a shared variable instead of message passing were

used for the best solution).

The problem described is an example of a race

condition involving message passing (race was discussed in

chapter three). A slightly different race condition

involving messages was described in the section on

promulgating the best solution. The problem discussed there

resulted from using more than one process to issue the same

type of broadcast message. Both these problems occurred

because implicit assumptions were made about the relative

ordering between messages sent by different processes.

A correct approach to identifying the overall best

solution is easy. Each process can include in its completion

message the best solution found between itself and its

descendents. When a process receives completion messages

from its children, it compares their best solutions against

its best solution and forwards the best one to its parent.

3. Outputing the Best Solution

Once the goal node of the best solution has been

identified, it is necessary to follow the path from the goal

node to the root node to specify the solution. As discussed

in the section on memory management problems, this may

involve following pointers from the memory space of one

process to another. Given that a method exists for doing

this (one approach is suggested in the next chapter), the

121

director process can coordinate the following of the path

from goal to root node and can coordinate outputing the

solution.

G. CHAPTER SUMMARY

Some of the tools discussed in the previous chapter on

concurrent programming are inadequate for efficiently using

typical concurrent architectures. For example, using the

high-level view that each process runs on its own processor

and that all processes have easy access to a shared memory

leads to the fundamental problem of bottleneck. Thus a

different high-level view is needed so that the programmer

can achieve effective concurrency on available architectures.

In probing different approaches to the tree search program,

no particular operating system capabilities were assumed.

Rather, for each approach, it was pointed out what operating

system requirements would be necessary if that approach were

to be used. In other words, in designing an appropriate

high-level approach, operating system interfaces were also

being designed. This is because the operating system

interface determines whether or not the high-level view and

its corresponding approach can achieve their potential.

Besides supporting a high-level view, the operating

system interfaces that the view requires provide a measure of

the worth of that view. For example, if the operating system

122

interfaces become too complex and require too much overhead,

then the high-level view is probably inadequate.

This chapter has leaned toward message passing as a high-

level tool for supporting an adequate high-level view. One

reason for this is that messages can distribute information

without the need for a shared memory; hence, bottleneck is

avoided. Like other concurrent programming tools, message

passing has a potential for race that the programmer must

understand. Interestingly, the nature of message passing

which causes race also provides advantages. Race can be

caused because there are delays between when a message is

sent, when it is available for receipt, and when it is

received. But these temporal delays also provide less

restriction for processes. To-wit: a process -;an send a

message and immediately proceed to do something else; and, a

process can check for the existence of a message whenever it

wants to--it does not have to be waiting when the message is

sent.

The next chapter presents ;ome candidate high-level

algorithms for the eight-puzzle program which reflect the

analysis of this and the last chapter.

123

V. A CONCURRENT TREE SEARCH ALGORITHM

In this chapter, a high-level algorithm for a concurrent

tree search is presented. The algorithm is explained after

first describing the approach taken and the high-level view

adopted for writing the algorithm.

A. APPROACH

The approach taken for the algorithm is based on the

discussion of the last chapter and is as follows. There is

no global frontier; the frontier is divided among search

processes. Initial distribution of the frontier is done by

"amoeba-splitting" expansion of processes based on operating

system messages for processor availability. A director

process creates the first search process and then waits for a

search complete message.

When a search process finds a new best solution, it

promulgates the value of the solution directly to other

search processes by a broadcast-queue message. Uniform

heuristic frontier distribution is dynamically controlled by

priority driven process creation. Processes detect the need

to expand their frontier by internal comparison instead of

inter-process comparison of heuristic worth.

Memory overflow is also considered. If there is no

memory available when a process attempts to create a node,

124

the process: (a) creates a new process and passes the

frontier to it; (b) sends a completion message. The

operating system will send the newly created process to

another processor with sufficient memory, if any is

available.

Processes signal completion of their search by sending a

message to their parents. Completion messages include value

of the goal node representing the best solution found. When

the director process receives a search complete message, it

creates an output-result process which outputs the solution

by tracing the path from the goal node to the root node. The

output-result process follows a node pointer by sending a

message to the search process which has the node in its

memory space; the search process follows the pointer and

returns the node to the output-result process. This inter-

process approach of following pointers precludes the need for

operating system inter-processor memory references.

B. HIGH-LEVEL VIEW

As a basis for writing the algorithm, a high-level view

is taken which includes the available means of process

interaction as well as the available operating system

interfaces. In turn, the basis for the high-level view is

the (also high level) architecture view of Figure 7. However,

125

the high-level view is valid for any architecture which

supports the details of the view.

In the high-level view, shared data structures may be

used, but accessing them causes a bottleneck. Processes may

communicate by message passing. There is an arbitrary delay

between the time a message is sent and the time it is

available for receipt. However, sending a message and

checking for the existence of a message (by the EXIST-

RECEIVE() operation) causes a negligible delay.

Each process, conceptually, has its own memory space, or

bucket. A process cannot access another process' memory

space (e.g., by variable or pointer references). Although a

pointer value cannot be followed outside a process' memory

space, the value of the pointer may be passed between

processes.

Processes each run on their own virtual processor. How-

ever, there may be more processes than physical processors.

Physical processor allocation is done by the operating system

interface of PROCESSOR-AVAILABLE messages. On the other

hand, creating a process without first receiving a PROCESSOR-

AVAILABLE message creates a process on a virtual processor;

that is, the process may be created on a processor which has

other running processes. To allow the programmer the ability

to partially control the distribution of processes among

physical processors, the operating system considers the

126

priority of a newly created process in determining which

processor the process will run on.

The operating system interfaces contained in the high-

level view include: existence of operating system messages

for allocating processors (PROCESSOR-AVAILABLE MESSAGE), the

ability for a process to update its priority by sending a

PRIORITY-UPDATE message to the operating system, capability

for dynamic process creation, and availability of dynamic

memory allocation. Additionally, if memory requested is not

available, the operating system returns an error condition

rather than stopping the requesting process.

C. ON THE STRUCTURED USE OF MESSAGES IN PROGRAMS

As a prelude to explaining how the algorithm works, it is

appropriate to discuss a methodology for structuring message

declarations which improves the clarity of how the processes

interact.

Because the use of message passing involves spreading

messages textually throughout the text of different

processes, understanding the message passing interactions

between processes becomes difficult. With mutual exclusion,

this problem is conquered by the monitor/abstract data type

notion of grouping the operations textually with the shared

data. Because of their nature, messages need to be spread

throughout the text. Hence, it becomes even more important

to structure a program so that the use of message passing is

127

clear. Since all messages are listed there, the declaration

section of the program is a logical place to describe the

intended use of the messages.

Each message in a program has a purpose. Sometimes

several messages together serve a common purpose. For

clarification, those messages serving a common purpose should

be grouped together. An informal term describing a group of

messages which serve a common purpose is "message system."

It is useful to specify the purpose of each message as well

as the purpose of each group of messages forming a message

system. Additionally, it helps to name the intended receiver

and sender of each message.

Such message structuring is done in the program type

section of the algorithm of Figure 8. The only message

system specified there is used to trace the solution from the

goal node to the root node. For this message system the

director process is "in charge"--it initiates a message

request for the node pointed to by a pointer. A search

process responds with a message containing the value of the

node.

By studying the message declarations, then, a person

should be able to glean an understanding of now the processes

interact. If the message documentation is adequate, the

message-passing aspect of the program should be clear and

hence easy to maintain.

128

The process message interactions of the algorithm in

Figure 8 are not complex, but one can imagine programs where

the message interactios become very complex. For example,

an approach not used in this algorithm is to have a

heuristic-director process which directs a "hot" process to

send part of its frontier to a specified process. This

approach is used for maintaining a uniform heuristic

distribution and was discussed in the previous chapter. A

message system which accomplishes such a transfer can become

complex.

A scenario for such a transfer might involve these

transactions: Process A sends a message to a heuristic-

director process indicating a change in Process A's heuristic

vralue; the heuristic-director determines that Process A has a

much better frontier than Process B; the heuristic-director

sends a message to Process A telling it to send part of its

frontier to Process B; Process A receives the heuristic

director's message and reacts by sending a message

containing frontier nodes to Process B; Process A sends a

message to the heuristic director that the frontier transfer

has been started; and, Process B receives Process A's message

and sends a message to the heuristic-director that the

transfer is complete.

The message system for effecting such a heuristic

transfer would thus involve numerous message types, each with

129

a particular purpose. If such a system were used without

explaining the workings of the messages as a group, it would

be very difficult to decipher the process interactions.

D. ALGORITHM SYNTAX

Figure 8 is the algorithm for a concurrent tree search.

The algorithm is written in a Pascal-like ad-hoc algorithmic

language.

Program structure of the algorithm is similar to that of

Pascal. In the type section of the program, messages are

declared as well as shared variables (there are no shared

variables for this algorithm). Next, process types are

declared. A process type looks like the declaration of a

subroutine but is used differently. An instance of a process

type can be created by a create-process call. A create-

process call requires these arguments: name of the process

type, any parameters the process type requires, and the

initial-priority of the created process. Any number of

instances of a process type can be created dynamically by the

program or by any process.

Within the declaration of a process type, message bin-

names as well as shared and local variables are declared.

Except for operating system messages, each bin-type message

is differentiated from the message-type declared in the

program by appending a "01 to the program message-type name.

130

Thus, the program message-type "new-best-solution" becomes

the bin-name "new-best-solutionl" in the processes.

Different bin-types are not needed for each program message

type, so there is a one-to-one correspondence between program

message-bin-types and process message-types.

In designating the receiver or sender of a message, a

process may use the name of a process type. This is

equivalent to specifying all existing instances of that

process type. A process may also use the keyword "parent" in

designating the sender or receiver of a message. This is

equivalent to specifying the name of the process' parent (if

there is no parent, using this keyword is an error). Another

keyword available is "self"; when a process uses "self", it

is translated into the name of that process.

The Pascal practice of specifying a field of a record by

placing a period between the record name and field name is

followed. This is required for accessing the contents of

most of the messages. The algorithm uses the following

conventions: /slashes enclose comments/ and {brackets

enclose descriptions of codel.

131

PROGRAM CONCURRENT-TREE-SEARCH

TYPE

* MESSAGES *

/SENDER/ /RECEIVER/ /MESSAGE/
/Operating System/ /Search-Process/ PROCESSOR-AVAILABLE-MESSAGE

CONSUMABLE

NO-CONTENT

/OS Interface-OS sends message when
there is a processor available/

/--

/Search Process/ /Operating System/ ?RIORITY-UPDATE MESSAGE
CONSUMABLE
RECORD
Proc-name:

tProcess name
typei

Priority:

iRange of
priority}

END /RECORD/
/OS Interface - A search process
sends message to operating system to
update its priority/

--

/Search-Process/ /Search-Process/ NEW-BEST-SOLUTION = MESSAGE
3ROADCAST-QUEUE
INTEGER

/Used to promulgate cost of a new
best solution/

--- /
Figure 8. Concurrent Tree Search Program

132

/Search-Process/ /Search-Process FINAL-RESULT-OF-
or Director PROCESS = MESSAGE
Process/ CONSUMABLE

RECORD
Solution Found:

Boolean
Solution-Node:
Node-Record

END /RECORD/
/Used to signal completion of a
process to its parent, and pass

best solution, if any/
/,--/

/Below Message System of two messages is used for tracing a solution from
goal to root node. The output-result process is in charge. Search
processes respond to output-result process./

/Output-Result /Search Process/ REQUEST-NODE-PTR - MESSAGE
Process/ CONSUMABLE

POINTER
/Requests from a search process the
node which is pointed to by pointer/

/ ------------------------- /

/Search-Process/ /Output-Result RESPONSE-NODE VSSAGE
Process/ CONSUMABLE (

NODE-RECORD
/Used for resonse to above request-
node-ptr message/

-- /

* NON-MESSAGES

Node-Record Record means "applicable type"/

State: { /State representation of this node!
Operator: / !Operator applied to parent node to

produce this node!

Fhat: / iEvaluation 3f node/
Proc-Con- ,/Process,if any, which contains the
taining parent of this node!
Parent:
Pointer-to- /Value is meaningful only within-
Parent: "Memory Bucket" of Proc-Containing
Pointer Parent/

End /Record/

?igure 8 contd.

133

FRONTIER-TYPE - jWhatever data structure is used for frontier list of

nodes

* DIRECTOR PROCESS *

TYPE

DIRECTOR = PROCESS (ROOT-NODE, GOAL-NODE: NODE-RECORD)

VAR
Final-Result-of-Processi: Final-Result-of-Process /Message/
Frontier: Frontier-Type

BEGIN /DIRECTOR PROCESS/
CREATE-PROCESS (SEARCH-PROCESS, FRONTIER, GOAL-NODE, PRIORITY)
AWAIT-RECEIVE (F:NAL-RESULT-OF-PROCESS1)/Go to "SKeep" till search done
IF FINAL-RESULT-OF-PROCESS1.SOLUTION-FOUND = FALSE THEN

-Output "Program Done, No Solution Found"}
ELSE

CREATE-PROCESS (OUTPUT-RESULT, FINAL-RESULT-OF-PROCESS.SOLUTION-NODE,
PRIORITY)

END IF
END7DECTOR PROCESS/

* OUTPUT-RESULT PROCESS *

rYPE

OUTPUT-RESULT-PRCkiSS = PROCESS (GOAL-NODE: NODE-RECORD)

VAR
CH:LD-NODE: NODE-RECORD
:S-ROOT: BOOLEAN

PROCEDURE GET-PARENT-NODE (CHILD-NODE, PARENT-lODE: NODE-RECORD; 7S-ROOT:

BOOLEAN)
/This procedure is passed Child-Node. it returns the Parent-Node of
Child-Node and the boolean 13-Root which indicates if the parent-node is

the root-node. The pointer to the parent of child-iode is followed by
using message communication with the process whioh .ontains the parent-
node/

Figure 3 contd.

1374

VAR
REQUEST-NODE-PTRl: REQUEST-NODEPTR /Message/
RESPONSE-NODE-I: RESPONSE-NODE /Message/

BEGIN /GET-PARENT-NODE-PROCEDURE/
REQUEST-NODE1 <-- CHILD-NODE.POINTER-TO-PARENT
SEND (REQUEST-NODEl, CHILD-NODE.PROC-CONTAINING-PARENT)
AWAIT-RECEIVE (RESPONSE-NODEl)
PARENT-NODE <-- RESPONSE-NODE1
IS-ROOT <-- (PARENT-NODE.POINTER-TO-PARENT = NIL)

END /GET-PARENT-NODE PROCEDURE/

/---

PROCEDURE STACK (NODE: NODE-RECORD)
/This procedure places nodes along the path from goal to root note on a
stack. This is done to get the solution in the correct order for
output/

END //Stack/

--- /

PROCEDURE /OUTPUT-STACK/
/This procedure outputs the solution which was stacked. For the top

node on the stack (the Root-Node), only the state representation is
output. For the rest of the nodes, the operator which produced that
state is output followed by the state representation/

END /OUTPUT-STACK/
-- /

BEG:N /OUTPUT-RESULT PROCESS/
STACK (GOAL-NODE)
CHILD-NODE <-- GOAL-NODE

REPEAT
GET-PALRENT-NODE (CHILD-NODE, ?ARENT-NODE, IS-ROOT)
STACK (PARENT-NODE)
CHILD-NODE <-- PARENT-NODE

UNTIL :S-ROOT

DUTPUT-STACK

END /CUTPUT-RESULT PROCESS/

Figure B contd.

135

* SEARCH PROCESS *

TYPE

SEARCH-PROCESS = PROCESS(FRONTIER, GOAL-NODE)

VAR
NEW-FRONTIER: FRONTIER-TYPE
FRONTIER-EMPTY: BOOLEAN ,/Indicates if frontier has any nodes in it/
NUMBER-OF-NODE-EXPS-BET-COMM-CHECK: INTEGER /Indicates No. of node

exp's done before checking for messages/

BEST-SOLUTION: INTEGER /Value of best solution found/
NO-OF-CHILD-PROCESSES: tPOSITIVE INTEGERI /Number of processes created

by this process/

NEW-BEST-SOLUTION : NEW-BEST-SOLUTION /Message/
FINAL-RESULT-OF-PROCESS1: FINAL-RESULT-OF-PROCESS /Message/
/MESSAGE-SYSTEM/
REQUEST-NODE-PTRIt REQUEST-NODE-PTR

RESPONSE-NODEI! RESPONSE-NODE
/END MESSAGE-SYSTEM/

--- /

PROCEDURE SPLIT-FRONTIER (FRONTIER, NEW-FRONTIER: FRONTIER-TYPE)
/This procedure creates a new frontier with some of the best nodes from
frontier. New-frontier is used by a newly created process/

END /PROCEDURE SPLIT-FRONTIER/

--- /

PROCEDURE EXPAND-NODE
/WITHIN EXPAND-NODE PROCEDURE IS INCLUDED THE FOLLOWING FOUR SITUATIONS/

/(1) EXMORY OVERFLOW - WHEN REQUESTING SPACE FOR CREATING NEW ;ODES/

IF No memory availablel THEN
CREATE-PROCESS (SEARCH-PROCESS, FRONTIER, GOAL-NODE, PRIORITY)
jFWPTY THE FRONTIER OF NODESi
FRONTIER-EMPTY <-- TRUE

END IF

/(2) WHEN CREATING CHILDREN NODES/

Proc-Containing-Parent <-- Self /Indicate self as parent of

node. Necessary for following
pointers during output/'

Figure 8 iontd.

,36

/(3) PROMULGATING BEST SOLUTION/
IF SOLUTION FOUND THEN

WHILE EXIST-RECEIOV(NEW-BEST-SOLUTION!) DO
tU-date best solution and frontier}

END WHILE

IF JValue of solution found is better than best solution THEN
BEST-SOLUTION <-- lValue of solution foundi
NEW-BEST-SOLUTIONI <-- BEST-SOLUTION
SEND (NE"W-BEST-SOLUTIONI) /Promulgate a New Best Solution/

END IF
END IF

/(4) CHANGE IN HEURISTIC WORTH AND HOT PROCESS ACTION/

IF ISignificant change in heuristic worth of frontier} THEN
JUpdate ?riority

END IF
SEND (PRIORITY-UPDATE, OPERATING-SYSTEM)

IF IProcess is "hot" and thus needs help with frontier} THEN
Split-Frontier (Frontier, New-Frontier)

iassign priority for new processl
CREATE-PROCESS (SEARCH-PROCESS, NEW-FRONTIER, PRIORITY)

END IF

END /PROCEDURE EXPAND-NODE/

--- /

BEGIN /SEARCH PROCESS!

/START UP/
Fo lowing takes care of initial process expansion to fill processors/

VHILE EXIST-RECEIVE (PROCESSOR-AVAILABLE) DO /0S Interface/
--- pand-Nodes until frontier is large enough to split)
SPLIT-FRONTIER (FRONTIER, NEW-FRONTIER)
iAssign priority for new processi
IREATE-PROCESS (SEARCH-PROCESS, NE7-FRONTIER, GOAL-NODE, PRORTY)

END DO

Figure 8 contd.

137

/ SEARCH!
FRONTIER-EMPTY <-- FALSE
REPEAT

i <-- NUTMBER-OF-NODE-EXPS-BET-COMM-CHECK
REPEAT

EXPAND-NODE
i <-- i - 1

UNTIL FRONTIER-EMPTY OR (i - O)

/Check for messages/
WHILE EXIST-RECEIVE (NEW-BEST-SOLUTIONI) DO
-Update best-solution and frontier}

END DO
UNTIL FRONTIER-EMPTY

/FINISH/
/Promulgate to parent that search completed and best-solution found/
IF NO-OF-CHILD-PROCESSES > 0 THEN

FOR j <-- I TO NO-OF-CHILD-PROCESSES DO
AWAIT-RECEIVE (FINAL-RESULT-OF-PROCSI)
/Keep best solution found between children and self/

END DO
END IF
jInsert best solution into Final-Result-of-Processl Messagej
SEND (FINAL-RESULT-OF-PROCESSI, PARENT)

/OUTPUT BEST SOLUTION/
/-ait for messages requesting node in solution path/
DO
AWAIT-RECEIVE (REQUEST-NODE-PTRI, OUTPUT-RESULT)
RESPONSE-NODE1 <-- ^.REQUEST-NODE-?TR1)/Follow pointer to requested

node/
SEND (RESPONSE-NODE1, OUTPUT-RESULT) /'Send node found to output-

result process/

FOREVER
END /SEARCH PROCESS/

* PROGRAM *

BEGIN /PROGRA/
CREATE-PROCESS (DIRECTOR, ROOT-NODE, GOAL-NODE, PRIORITY)
END /?ROGRAM/

Figure 3 conti.

138

-~ -. -

E. EXPLANATION OF ALGORITHM

This section explains the algorithm. First, an outline

of the algorithm is presented so that the reader will have a

summary of the names and order of the processes and

procedures. Next, a complete description of how the

algorithm works is given.

1. Outline

An outline of the algorithm is given below:

Program Concurrent Tree Search
Message Declarations
Non-Message Declarations

Director Process Type Declaration
Output-Result Process Type Declaration

Procedure Get-Parent-Node
Procedure Stack
Procedure Output
Output-Result Process Code

Search Process
Procedure Expand-Node

(1) Memory Overflow Actions
(2) While Creating a Node, Insert Self
(3) Promulgating Best Solution
(4) Change In Heuristic Worth and Hot Process

Action
Code For Search Process

Code for Concurrent Tree Search Program

Note that there are only three process types: the director

process, the output-result process, and the search process.

Only one instance of the director and output-result process

are created, whereas numerous instances of the search

process are created.

139

2. During Search

How the program functions while the search is in

progress will be explained first. An explanation of how the

program gets started and how it finishes will be given later.

Look at the declaration of the search process type.

Under the word "typew, the search-process is declared as a

process type which is passed a frontier and goal-node when

created. After the declaration is procedure Split-Frontier

and procedure Expand-Node. Following the Expand-Node

procedure is the code for the search process. Note that the

search process code is divided into four sections: start up,

search, finish, and output best solution. Look at the

section for search. When the search is in progress, each

search process executes this section of code. As long as the

frontier has nodes in it (frontier-empty = false), the search

process goes through the cycle of expanding nodes and

checking for messages. The number of node expansions between

checking for communications is specified by the variable

Number-Of-Node-Exps-Bet-Comm-Check. In this algorithm, the

only communication check is for a new-best-solution message;

in the other tree-search approaches previously discussed,

there may be more external communications.

A node is expanded by calling the procedure Expand-

Node. This procedure expands a node from the frontier into

children nodes and checks for the occurrence of a goal node

140

among the children nodes. Only four situations within this

procedure are shown.

First are memory overflow actions. If there is no

memory available to create a child node, a new search process

is created and the entire frontier passed to it. The

motivation for creating a new process is that the operating

system will place it on a processor which has available

memory space.

The second situation shown in Procedure Expand-Node

occurs during creation of a child node. The search process

inserts its name into the proc-containing-parent field of the

node record. This is necessary for following the child-

node's pointer to its parent. To follow the pointer it is

necessary not only to know the pointer value but also to know

the name of the process containing the parent node. One can

think of the pointer value as being a composite value

consisting of a memory address and process name.

Procedure Expand-Node next takes action necessary if

it finds a solution. First it checks if there are any new

best-solutionl messages so it can compare the value of its

solution with the most current best solution. If the

solution found by Procedure Expand-Node has a better value

than other solutions found, a message is sent to other search

processes promulgating this new solution value.

141

The final situation shown in Procedure Expand-Node is

that of a significant change in heuristic worth. If the

procedure determines that the heuristic worth of its frontier

has changed significantly it sends a message to the operating

system to update the priority. This is done so that the

operating system can allocate processor time accordingly

among search processes on the same processor. If the

procedure further determines that the change in heuristic

worth was sufficient to warrant "getting help", it creates a

new search process and passes part of the frontier to it.

After the search process has done the required number

of node expansions by calling procedure Expand-Node, it

checks for the existence of any new-best-solutionl messages.

If any exist, the best solution is updated and the frontier

purged of any nodes which have less potential than the new

solution.

The search process continues the cycle of expanding

nodes and checking for new-best-solution messages until there

are no more nodes in the frontier to expand.

3. Start Up

Look at the program section of the algorithm, located

at the bottom of the code. When the program is started, this

section is executed. The program code consists of only one

statement which creates an instance of the director process

type, passing it the values of the root and goal nodes. Now

142

look at the code for the director-process type to see what it

does. It creates an instance of the search-process type and

waits for a message from that search process signalling that

it is done. Thus, the director process "goes to sleep" until

the search is finished. With the director process asleep,

look at the start-up section of the search process to see

what is done next during the start up of the search. The

search process created by the director process checks for the

existence of a processor-available message (which is sent by

the operating system). If such a message exists, the search

process creates another search process and passes part of the

frontier to it. As long as processor-available messages

exist, each search-process will create new search processes.

In this manner, search processes are shared on each processor

with the frontier divided among them. When no more

processors are available, each search process proceeds to the

search portion of its code.

4. Completion of Search

A search process has completed its search when its

frontier is empty. When that happens, a search process

enters the section of its code titled "Finish". In the

finish section, a search process first waits for receipt of

completion messages from each of the search processes it

created during start up. The completion message is called

Final-Result-of-Processl, and it indicates not only that a

143

process has completed its search, but also includes the value

of the goal-node representing its best solution (if any).

When a search process has received completion messages from

all its children, it picks the best solution from among the

solutions of its children and its own solution (if any).

This best solution, if any, is then sent by the search-

process to its parent. In this manner, all search processes

report their completion until finally the director process

receives a completion message from the search process it

initially created. The director process then knows that all

search processes have completed and also knows the best

solution found.

Now look at the director-process code. At the point just

described, it has received the message which it has been

"asleep" waiting for since it created a search process. It

now examines the final-result-of-processl message to

ascertain if any solution has been found. If sop it creates

an output-result process, passing it the goal-node which is

part of the best solution.

5. Solution Output

At the time when an output-result process is created,

the search is complete and the best solution identified. All

that remains to be done is to trace the solution from the

goal-node to the root-node by following the pointers

contained in each node record of the solution path. A

144

pointer can be followed only within the process memory space

to which the pointer applies. Thus, for the output-result

process to follow a pointer, it must request help from the

search process containing the node pointed to by the pointer.

This is the reason that each search process placed its name

in a created node record. The output-result process, using

the get-parent-node procedure, sends a message containing the

pointer value to the process specified in the "proc-

containing-parent" field of the node record.

Look at the output best solution section of the

search process type. After sending a completion message to

its parent, each search process waits for a request-node-ptrl

message from the output-result process. When a search

process receives such a message, it follows the pointer value

of the message (using the Pascal "follow-pointer" operation:

•?.") and retrieves the desired node. The value of this node

is sent to the output result process and the search process

again waits for another node request message.

In this manner, the output-result process traces the

solution path from goal to root node. Each node is stacked

(by the stack procedure) to place the solution in the correct

order. The trace of the solution path is terminated when the

root node is reached (determined by recognizing that since

the root has no parent, its pointer-to-parent field has the

value nil). After the entire solution path has been stacked,

145

the solution is output from the stack. The output of the

solution completes the program. (Note that the search

processes never "finish"; they are in infinite loops waiting

for node request messages).

The reader may wonder why the output-result process

was written as a process and not as a subroutine of the

director process. After all, only one instance of the output-

result process was ever created. The output-result process

was written as a process to allow flexibility in changing the

program. Consider the situation when it is desirable for the

concurrent-tree-search program to output not just the best

solution, but several solutions. At the end of the search,

the director process could receive several solution nodes.

With only minor modifications to the program, the director

process could create an instance of the output-result process

for each goal-node found. The modification required is for

each output-result process to specify its name in the

request-node message it sends to search processes. A search

process would address its response-node message to the

output-result process that sent it. In this manner, any

number of output-result processes could concurrently trace

and output the same or different solutions. A little thought

should convince the reader that this is possible, and that

there is no chance of a race condition (such as two output-

146

result processes "mixing up" the solution paths they were

tracing).

6. Message Declarations

If the reader hasn't done so already, it is a good

time to study the message declarations. The stated purposes

of the different messages should be sufficient to give the

reader an overall view of the process interactions which

occur in the program. In fact, studying the message

declarations is a good starting point for understanding a

concurrent program which is based on message passing.

F. CHAPTER SUMMARY

One algorithm for concurrently solving a tree-search

problem such as the eight-puzzle has been presented. It is

again stressed that the design of the algorithm was part of

of the design of a high-level view. Design of the high-level

view also included the design of necessary operating system

interfaces.

The algorithm illustrates one way of performing a

concurrent tree search; it should not be construed as the

best approach of those discussed in the previous chapter.

Empirical testing is needed before final evaluation of the

various approaches can be made.

147

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Presented in this chapter are a summary of the thesis,

general conclusions, and recommendations for further study.

A. THESIS SUMMARY

Tree search, as typified by the eight-puzzle problem, is

fundamental to the field of artificial intelligence. Even

with good heuristic functions, the time it takes on a single

processor to solve progressively more difficult tree search

problems grows exponentially and quickly becomes

constraining. It seems reasonable that the use of

concurrency should significantly improve the speed of a tree

search.

As background, Chapter Two discusses the fundamentals of

tree search using the eight-puzzle problem for an example.

In Chapter Three, an overview of concurrent programming

issues is presented. The problem of mutual exclusion

illustrates key differences between sequential and concurrent

programming. However, the use of mutual exclusion for

structuring a problem should generally be avoided if other

approaches are available. When used, mutual exclusion should

be relegated to a lower hierarchial level, preferably by

incorporation into abstract data types.

148

Precedes relation and synchronization are examples of

high-level concurrent approaches to structuring certain types

of problems. Problems can also be structured by using the

high-level tools of message passing. The differences between

sequential and concurrent programs is illustrated by the

range of nondeterminism concurrent programs can exhibit.

With concurrent programming issues as background, Chapter

Four develops some approaches for a concurrent tree search

program. A good high-level approach should present a view to

the programmer which is conducive to writing programs that

run efficiently on the underlying architecture. As a result,

development of a high-level approach includes development of

operating system interfaces.

Based on one of the approaches in Chapter Four, Chapter

Five provides a high-level algorithm for solving the eight-

puzzle problem. The algorithm uses message passing as the

basis for its high-level structure. It should not

automatically be construed as the best algorithm for solving

the problem. It, as well as other approaches, need to be

evaluated empirically.

B. BACKGROUND SUMMARY

Nils7l is an excellent textbook on artificial

intelligence problem solving and contains the fundamentals of

tree search.

149

Dijk68A is the pioneering work on the mutual exclusion

problem and introduces P and V, and semaphores. Brin73

includes further work on mutual exclusion. Monitors are

described in Hoar74 and are based on some of the concepts of

Brin73. For a discussion on the traditional (non-concurrent)

notion of abstract data types, see Horo76. The heap

structure is the basis for the concurrent priority queue

example of Appendix A and is explained in Aho75.

The precedes relation specification is introduced in this

thesis. Alternate methods of specifying a precedes relation

are the FORK operation found in Conw63 and the CoBegin/CoEnd

construct first introduced as ParBegin/ParEnd in Dijk68A.

Path Expressions are a means of synchronizing and are

described in Habe75 and And178. The synchronization

primitives eventcounts and sequencers are described in

Reed79.

The message system developed in Chapter Three is not

based specifically on any references and some of the notions

discussed are new. Brinch-Hansen discusses messages in

Brin73. He discusses the notion of messages with no content

in his section on semaphores [Brin73: p. 931. The type of

messages discussed in Brin73 require an explicit queue and

are consumible (although Brinch-Hansen doesn't use that

term). Holt78 (p. 31) describes messages which are addressed

by specifying the receiver. The UNIX Operating System

150

4 - I l I I I-l -

(Ritc74) use- messge passing via pipes; pipes are somewhat

similar to the bin concept discussed in this thesis. The

object-oriented programminq languace Smalltalk [Gold8l] is

based on objects which respond to messages. Languages based

on actor semantics (Grei75, Hew77A, and Hew77B] are based on

message passing to a greater degree than the message-system

of this thesis.

For further reading which presents good overviews of

concurrent programming, see Cali82 and Brya79. For a

discussion of hierarchical structuring, see Dijk68B.

The problem of a bottleneck due to architecture was

recognized as early as 1963 by Conway (Conw63]. Conw63,

incidentally, presented some keen insights into concurrency.

In the literature review done for this thesis, little

detailed work was found on concurrent tree search issues.

Consequently, most of the issues developed in Chapter Four

are original. Although he solves a different problem,

Kornfeld in Korn8l discusses some critical notions of

concurrent heuristic search. For example, the notion of a
"hot* process was gleaned from Korn8l. Related articles on

concurrent tree search are Fish80 and Ima.79. FishSO

discusses an alpha-beta type tree search which uses message

passing (principles of alpha-beta search are found in

Nils7l). Imai79 uses the idea of a current best solution.

151

S -- - ---. -

Sugi8l was the one reference found which most closely

related to the problem this thesis tries to solve. The

article presents a concurrent Lisp solution to the eight-

puzzle problem. In the solution, the frontier of the search

tree is divided among processes and a director-type process

(they call it a monitor) selects the best processes to run.

Both mutual exclusion and message passing are used as a basis

for the solution. The article does not addresss many issues

of concurrent tree search, but rather is written primarily to

present a solution.

There are some similarities between the syntax of the

Chapter Five algorithm and the concurrent Pascal of Brin77.

One primary difference is that concurrent Pascal does not

allow dynamic process creation whereas the algorithm of this

thesis does.

C. CONCLUSION

Foundations have been laid for evaluating and choosing an

efficient high-level approach to a concurrent tree search

problem. It is believed that the result of further work will

not only be an effective program for concurrent tree search,

but will also be a high-level approach to structuring

concurrent programs that is useful for other applications.

D. RECOMMENDATIONS

It is recommended that empirical tests on an appropriate

architecture be done to refine and evaluate some of the tree

152

search approaches suggested. At a minimum, the following

approaches should be evaluated:

1. Global frontier;

Combinations of the following

2. With and without a limited global frontier;

3. With and without best solution propagation;

4. With and without detection and correction of non-
uniform heuristic distribution using combinations of

a. Heuristic detection by internal comparison; by
external comparison.

b. Heuristic distribution by priority driven
process creation; by passing to existing
processes.

Evaluation considerations should include:

1. Strengths and weaknesses of message passing;

2. Geieral usefulness of high-level programming views,
including operating system interfaces.

In addition to empirical tests, mathematical analysis is

recommended for questions such as:

1. How much frontier expansion is necessary for a good

initial heuristic distribution?

2. How often should processes check for external
communications such as promulgation of a new best
solution?

153

I -

APPENDIX A

IMPLEMENTATION OF A CONCURRENT PRIORITY QUEUE USING A HEAP

Aho75 (pp. 87-92) discusses the properties of a heap. A

heap is a binary tree such that: values are "stored" at each

node, all leaf nodes must be located at depth d or d + 1,

and the leaves at the lowest level must be as far "left" as

possible. Furthermore, the heap must satisfy the heap

property: the valte of each node is greater (less if the

heap is ordered by the smallest rather than largest value)

than the value of each of its children nodes (if the node has

any children). It is convenient to use an array for

representing a heap because of the ease of calculating the

location of a child or parent of a node. The children (if

they exist) of a node located at the ith slot of an array are

located at the (2i) and (2i + 1) slots of the array.

An insertion into a heap is done by creating a new leaf

node and placing in it the value to be inserted. To maintain

the heap property, the newly inserted node must be "bubbled

up" the tree. The new value is compared to the value of its

parent node; if the new value is greater (less), the values

of the two nodes are exchanged. A new value bubbles up in

this manner until no exchange is necessary or the new value

is at the top of the tree. In the array, this corresponds to

calculating slot numbers of the array and exchanging values.

154

Concurrent insertions can be allowed by "locking" only

the ncessary slots of the array as follows. The slot into

which a new value is initially inserted is first locked (call

it the child slot). Then the parent location is locked. A

comparison is now made between the values in the two locked

slots and, if required, a swap made. Following this, the

child slot can be released. If an exchange was made, then

the parent slot (which is still locked) is now the child

slot, and a new parent slot is locked. This cycle of locking

a parent slot, comparing values, releasing the child slot,

and locking a new parent slot continues until an exchange is

required or the value bubbles to the top of the heap. Any

remaining locks are released when the "bubble-up" is

completed. Some thought should convince the reader that any

number of concurrent insertions can be done in this manner

with no chance of deadlock or race.

A deletion from a heap is done by "removing" the value of

the root node. This leaves an empty node in the heap; to

fill it, the value of the rightmost of the lowest leaf nodes

is placed in the root node and that leaf node deleted. The

new value at the root must be "bubbled down* in the heap to

preserve the heap property. This is done by comparing the

value of the root node with the values of its children nodes.

The value at the root node is exchanged with the greater

(lesser) of the values of the children. In this manner, the

155

new root node bubbles down the tree until no exchanges are

necessary or the value arrives at a leaf node.

Deletions can be done concurrently in a manner similar to

concurrent insertions. instead of locking one node for an

exchange as required for insertions, up to two nodes (the

children) must be locked. However, there is a problem. With

each deletion, the size of the heap decreases. Thus, when a

value is bubbling down, the size of the heap may be changing

if other deletions are concurrently taking place. Changing of

the heap size wasn't a pzoblem with an insertion because the

size of the heap mattered only during the first part of the

insertion (creation of a leaf node). In a deletion, however,

the value bubbling down will not know where to stop. This

problem is solveable (although the author doesn't know an

"elegant" solution), but to simplify the solution shown in

this appendix, only one deletion at a time will be allowed.

Allowing insertions and deletions to occur concurrently

makes the problem more difficult. When an insertion value

bubbling up "meets* a value bubbling down from a deletion,

there is a deadlock. If the deadlock is somehow resolved in

favor of one of the values, then another problem occurs.

Consider an example. Let procedure Insert be in the process

of bubbling value I up the heap. Let procedure Delete be in

the process of bubbling value D down the heap. When values I

and D "meet', there is a deadlock: procedure Insert is

156

-- _ _ _....- -. o , ., . . .

requesting a lock on the node containing D and procedure

Delete already holds that lock; similarly, procedure Delete

is requesting a lock that is already held by procedure

Insert. Assume this deadlock is resolved in favor of

procedure Delete, i.e., procedure Insert loses its lock to

procedure Delete. Further assume that procedure Delete

exchanges its value with procedure Insert's value. The

problem is that procedure Insert has "lost" the location of

its value because procedure Delete just moved it. One can

think of solutions to this problem which require

communication between procedure Delete and Insert. Because

the author has not developed a nice solution to this problem,

a solution allowing concurrent insertions and deletions will

not be shown.

Based on the previous discussion, the restrictions placed

on this problem are: any number of concurrent insertions are

allowed, but deletions must be done separately. These

restrictions are the same as reader-writer problems which

allow concurrent reads but require separate writes. CourTl

gives two solutions to such a reader-writer problem. One

solution allows read operations to delay write operations

indefinitely and the other solution requires that a write

request be honored as soon as possible (i.e., no read

requests can be honored if a write request exists). The

algorithm of this appendix incorporates the solution of

157

Cour7l which allows write requests to be delayed

indefinitely. This means deletions are delayed as long as

insertion requests exist. It is stressed that changing the

algorithm to honor deletions as soon as possible would be

simple. Such a change could incorporate the other solution

of Cour7l.

A solution based on P and V operations which allows

concurrent insertions but separate deletions follows. It

uses the following conventions: /slashes enclose comments/

and {brackets enclose descriptions of codel.

SHARED VARIABLES

insertioncount: integer /initial value = 0/
insertion-sequencer, heapdoor: semaphore /initial value = l/
max: [max size of heap arrayl
N: l..max /current size of heap/
heap: array l..max of integer
heaplock: array l..max of semaphore /semaphores initialized

to I/
heapsize: semaphore /initial value = 1; used to obtain

current value of NI

INSERTION /any number of concurrent insertions allowed/

VAR
self: l..max /current location of number being inserted/
parent: 1..max /current location of parent of number

being inserted/

/OBTAIN ACCESS TO HEAP/
P(insertion-sequencer)
insertioncount <-- insertioncount + 1
IF insertioncount = 1 THEN P(heapdoor)
V(insertion-sequencer)

158

'-I - .lii- -

/DO INSERTION/
P (heapsize)
N <-- N + 1
self <-- N
P(heaplock (self)) /lock location of self in heap/
V (heapsize)
Heap (self) <-- (value being inserted into heap}

REPEAT
T alculate parent's address in heapl
P(heaplock (parent))
(do comparison and swap if necessary}
V(heaplock (self))

IF (swap not done or at top of heapi THEN
V(heaplock (parent))

ELSE
self <-- parent /number being inserted has moved up

heap/
END IF

UNTILd'one} /repeat cycle until no swap done or at top of
heap/

/LEAVE HEAP/
P (insertion-sequencer)
insertioncount <-- insertioncount - 1
IF insertioncount = 0 THEN V(heapdoor)
V (insertion-sequencer)-

DELETION /only one deletion at a time/

P (heapdoor)
[do entire deletioni

V (heapdoor)

EXPLANATION OF ALGORITHd

The semaphore heapdoor is used to gain access to the

heap. Since any number of insertions may be done, only the

first insertion of a group of insertions need lock the heap.

To accomplish this, the semaphore "insertion-sequencer" is

used to ensure only one insertion process (if implemented as

159

a process) requests an insertion entry at a time. The

variable insertioncount represents the number of insertions

currently in progress. Similarly for "leaving" the heap,

only the last insertion process need "unlock" the heap.

The "array" heap represents the heap. To allow locking

separate slots of the array, another array called heaplock is

used and it contains semaphores initialized to 1. When a

value is initially inserted, the size of the heap array must

be locked to prevent several processes from inserting values

into an already occupied slot. The semaphore heapsize is

used for this purpose.

Since the deletion must be done separately, its

concurrency considerations consist only of locking and

unlocking the heap.

160

- t

APPENDIX B

DERIVATION OF POURER/TAKER ALGORITHM WITH EVENTCOUNTS AND
SEQUENCERS

See the algorithm and explanation of Section III. C. 2.c.

Initial Conditions

An array (presented in Chapter Three as a racetrack) of

size N is initially full.

Pourer (Producer)

Let i be the number of completed pours. Let T be the

number of completed takes. Since the array is initially

full, the number of pours can never exceed the number of

takes. Said another way, the number of pours must be less

than or equal to the number of takes:

i CT

If the pourer desires to make a pour, it must ensure that

the number of pours already made plus the desired pour is

less than or equal to T, i.e.,

(i + 1) S T

must be satisfied to proceed with a pour. This is equivalent

to T ,> (i + 1) which is specified by:

AWAIT (T, i + 1)

161

-- a.

Taker (Consumer)

Let i (a different i than the previous one) be the number

of completed takes. Let P be the number of completed pours.

Since the array is initially full, the taker can take up to N

times more than the producer. (When N times more has been

taken than poured, the array is empty or, at best, a pour is

in progress but not yet completed). Thus

(i - P) < N

must always be satisf ed. If the taker desires to take, it

must ensure that this condition will hold after the take,

i.e., after i is one greater. Thus,

((i+l)-P) < N -- > ((i+l)-N)< P -- > P > ((i+l)-N)

-- > AWAIT (P,(i+l)-N)

specifies this requirement. This completes the derivation.

162

LIST OF REFERENCES

Aho75 Aho, A., Hopcroft, J., and Ullman, J., The Design and
Analysis of Computer Algorithms, Addison-Wesley,
1975.

And178 Andler, S., "Predicate Path Expressions", Technical
Report, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, 1978.

Back78 Backus, J., "Can Programming Be Liberated From the
Von Neumann Style? A Functional Style and Its
Algebra of Programs", Communications of the ACM,
21-8, ACM, New York, Aug-, 978, pp. 613-641.

Brin73 Brinch Hansen, P., Operating System Principles,
Prentice-Hall, New Jersey, 1973.

Brin77 Brinch Hansen, P., The Architecture of Concurrent
Programs, Prentice-Hall, New Jersey, 1977.

Brya79 Bryant, R. E. and Dennis, J. B., "Concurrent
Programming", Research Directions In Software
Technology, ed. P. Wegner, The MIT Press -197.

Cali82 Calingaert, P., Operating System Elements, Prentice-
gall, New Jersey, 19a2.

Conw63 Conway, M. E., "A Multiprocessor System Design",
AFIPS Fall Joint Computer Conference Proceedngs, V.
2T47-artan-g"ook, Btiore, 1963.

Cour7l Courtois, P. J., Heymans, F., and Parnas, D. L.,
"Concurrent Control with 'Readers' and 'Writers'",
Communications of the ACM, 14-10, ACM, New York, Oct,
M7, pp. 667-668.

Dijk68A Dijkstra, E., "Co-operating Sequential Processes",
Programing Languages, ed. F. Genuys, Academic Press,
New York, 1968.

Dijk68B Dijkstra, E., "The Structure of the 'THE'
Multiprogramming System", Communications of the ACM,
11-5, ACM, New York, May, 1968, pp. 341-346.

163

-i -- --

Fish8O Fishburn, J. P., Finkel, R. A., and Lawless, S. A.,
"Parallel Alpha-Beta Search On Arachne", Proceedings
of the 1980 International Conference on Parallel
Processing, ACM and IEEE, 1980.

Gold8l Goldberg, A., "Introducing the Smalltalk-80 System",
BYTE, 6-8, Aug, 81. (There are numerous articles on
Smalltalk in this issue of BYTE).

Grei75 Grief, I., Semantics of Communicating Parallel
Processes, TecTnical Report TR-154, MIT Laboratory
for Computer Science, Cambridge, Mass., Sept 75.

Habe75 Habermann, A. N., "Path Expressions", Technical
Report, Department of Computer Science, Carnegie-
Mellon University, Pittsburg, June, 1975.

Hew77A Hewitt, C. and Atkinson, R., "Parallelism and
Synchronization in Actor Systems", Principles of
Programming Languages, ACM, New York, Jan, 1977, pp.
267-280.

Hew77B Hewitt, C. and Baker, H., "Laws for Communicating
Parallel Processes*, Information Processsing 77,
IFIP, North Holland Publishing Company, Amsterdam,
1977, pp. 987-992.

Hoar74 Hoare, C. A. R., "Monitors: An Operating System
Structuring Concept", Communications of the ACM, 17-
10, ACM, New York, Oct 1974, pp. 549-557.

Holt78 Holt, R. C., Graham, G. S., Lazowska, E. D., and
Scott, M. A., Structured Concurrent Programming with
Operating Systems Applications, Addison-Wesley, I7

Horo76 Hozowitz, E. and Sahni, S., Fundamentals of Data
Structures,Computer Science Press, Rockville, Md,
1'976.

Imai79 Imaj, M., Yoshida, Y., and Fukumura, T., "A Parallel
Searching Scheme For Multiprocessor Systems and Its
Application to Combinatorial Problems", Proceedings
of the Sixth International Joint Conference on
Ftf9lcN1-Q Ience, Tokyo, A -33, V. 1,

Korn8l Kornfeld, W. A., "The Use of Parallelissm to
Implement a Heuristic Search", MIT Artificial
Intelligence Laboratory, Al Memo No. 627, March,
1981.

164

-• m t V 7r .| im.- ~ .

Mins68 Minsky, M., "Semantic Information Processing", The
MIT Press, Cambridge, Mass., 1968.

Nils7l Nilsson, N. J., Problem-Solving Methods In Artificial
Intelligence, McGraw-Hill, 1971.

Reed79 Reed, D. P. and Kanodia, R. K., "Synchronization With
Eventcounts and Sequencers",Communications of the
ACM, 22-2, ACM, New York, Feb '7T, pp. 115-3

Ritc74 Ritchie, D. M. and Thompson, K., "The UNIX Time-
Sharing System", Communications of the ACM, 17-7,
ACM, New York, July 974, pp. 365-X--5

SugiSi Sugimoto, S., Tabata, K., Agusa, K., and Ohno, Y.,
"Concurrent Lisp on a Multi-Micro-Processor System",
Proceedings of the Seventh International Joint
Conference On Artificial Intelligence, IJCAI-81' V.
2, p. 9"49-954-.

155

4 ------ ------- m ---- - - - - - - - -.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Doug Smith, Code 52SC
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. William Shockley, Code 52SP 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. LCDR Curt Powley 4
Naval Submarine School
Code 20 SOAC
Box 700
Groton, Connecticut 06349

7. Curt Powley 3
c/o John Powley
215 North Maple
Gilman, Illinois 60938

8. Linda Widmaier I
SMC# 2143
Naval Postgraduate School
Monterey, California 93940

9. John Hayes, Code 54HT 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93940

166

- •4

10. LT Brenda Selby 1
Navy Regional Data Automation Center
Building 8-2
Naval Air Station
Alameda, California 94501

167

A

9
22 2 __.... _____ --- _-- _--_ _____

DTI

